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SUMMARY

A comprehensive experimental study was conducted to investigate the suitability of a 

modal analysis approach for identification of unknown pile embedment lengths. A small- 

scale pile facility containing partially embedded piles of different lengths, cross section 

dimensions, and encasement attributes was constructed so that experimental pile response 

data could be gathered in a controlled laboratory environment. Impact tests were performed 

at a number of locations on each model pile, and the modal parameters for each were 

estimated from the resulting frequency response function data.

To supplement the information gathered in the experimental program, three types of 

numerical analyses were conducted to simulate the frequency response characteristics of the 

pile-soil systems. Modal parameters corresponding to those computed from the 

experimental data were produced from each of the three analyses.

Comparison o f the modal parameters estimated from model piles with similar cross 

section dimensions and different buried lengths showed essentially no variation in natural 

frequency values as the buried length increased, in the frequency range that was practical to 

measure. Modal damping values showed greater variation with pile embedment depth, but 

no discemable trends were apparent that would allow identification of the embedded length. 

Results from the numerical studies indicated the same. It was concluded, then, for reasons

xxi
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cited in the text, that identification of pile embedment lengths using modal analysis is not a 

practically feasible task.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement 

As our nation’s infrastructure ages, it becomes increasingly imperative that engineers 

develop economical and efficient methods for assessing the condition o f the large number of 

existing structures that make up that infrastructure. Several interested agencies, including 

the Federal Highway Administration (FHWA) and many state transportation departments, 

have recognized this need and have addressed it by allocating resources for research 

programs focused on this objective.

One particular area of interest is the nondestructive evaluation of highway bridges. For 

many years, the primary method of assessing a bridge’s condition has consisted o f a 

subjective visual inspection performed by an experienced engineer (Washer, 1998).

Although this method has merit, it does not provide a quantitative estimate of the structural 

condition o f a bridge system. Fortunately, new methods have been developed that provide a 

more objective, comprehensive, and quantitative appraisal o f the structural state of various 

bridge elements. Many of these methods are nondestructive in nature; obviously, this type 

o f testing offers the distinct advantage of allowing inspectors to gather important 

information without damaging the existing structure and incurring repair costs.
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There are still certain aspects of the bridge evaluation process, though, that have yet to 

be fully refined. One such area is the determination of the tip elevation o f piles (or, more 

simply put, the determination o f the length o f pile that is buried in the surrounding soil) for 

bridges whose foundation properties are unknown. According to the FHWA, there are 

“ 100,000 bridges [in our country] for which we do not know how deep the foundation piles 

extend or even, in some cases, whether or not there are piles. Any type of scour or seismic 

assessment is meaningless without that information.” (Chase and Washer, 1997)

As this statement implies, pile tip elevation is an important parameter—it relates directly 

to the pile's capacity, and ultimately to the capacity of the entire bridge. For older bridges 

whose records no longer exist, for bridges that were not constructed as designed, or for 

those whose condition has changed over time (perhaps due to scour), there exists a need for 

the ability to quickly and correctly determine the buried lengths o f the existing bridge piles.

1.2 Objective

The objective of this study is to investigate the use of the modal analysis technique (to be 

described in detail in a later section) to nondestructively determine the embedded lengths of 

piles for bridges in which that information is not known. Various methods have been 

developed to accomplish this task for piles whose top surface is exposed and free to be 

instrumented. However, such piles rarely exist in bridge structures, and the more common 

case is that the tops o f the piles are cast into the bent cap. This lack o f access poses a 

challenging problem, and the research project described herein investigates the use of
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flexural waves, induced by striking the piles with a lateral impact, to determine the unknown 

embedment lengths.

The next section will include an overview of some of the previous research work that has 

been performed in the area o f nondestructive testing, and in the area of pile tip elevation 

determination in particular. A description of the modal analysis technique as it relates to the 

objective at hand will be provided in Chapter II, and will be followed by a detailed 

explanation o f the testing procedure, instrumentation, and equipment employed in this 

investigation in Chapter IQ. The results o f the modal analysis study will be presented and 

discussed in Chapter IV, and numerical simulations corresponding to the physical testing 

will be described in Chapter V, along with a theoretical solution that is included for 

comparison purposes. A study of the wave propagation characteristics of the pile test 

specimens will be presented in Chapter VI. Chapter VII will contain a discussion of the 

results and conclusions o f the investigation, and will provide suggestions for future 

research.

1.3 Background and Previous Work

1.3.1 Background

The National Bridge Inventory contains approximately 470,000 bridges (excluding 

culverts and tunnels), the majority of which are fabricated of steel, followed in number by 

concrete, prestressed concrete, and timber (Chase and Washer, 1997). Many of the bridges 

were built shortly following the Great Depression, and another bridge-building “spurt” 

occurred as the interstate system was being constructed. Unfortunately, approximately
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II 0,000 of those bridges are classified as structurally deficient, meaning that they have “a 

poor or worse rating for the condition o f the deck, superstructure, or substructure” or that 

their “load-carrying capacity is significantly below minimum standards.” (Chase and 

Washer, 1997) Of those structurally deficient bridges, 59% are steel bridges, 19% are 

timber, 18% are concrete, and 3% are prestressed concrete, with the remaining 1% made of 

other materials such as masonry, iron, and aluminum. It is interesting to note that among 

deficient steel bridges, less than adequate substructures are more prevalent than poor 

superstructures or decks. Another alarming fact is that approximately 5000 bridges become 

deficient each year (Chase and Washer, 1997). It is this growing number of inadequate 

bridge structures that has prompted the FHWA to sponsor a nondestructive evaluation 

(NDE) research program, and in fact, they have plans to construct a national center for 

nondestructive evaluation validation at the Turner Fairbank Highway Research Center.

As stated previously, individual state agencies are also concerned about the condition of 

their aging bridge structures. For example, according to personnel at the Georgia 

Department of Transportation, pile tip elevations are unknown for nearly half o f Georgia’s 

14,500 bridges (Gratton, 1994). Other states have similar statistics, and unfortunately, there 

are too many instances in which the substandard condition of bridges has led to collapse and 

loss of life. Some notable examples are the collapse o f the Silver Bridge at Point Pleasant, 

West Virginia in 1967, the snapping of two steel cables on New York’s Brooklyn Bridge in 

1982, the 1980 collapse of the Sunshine Skyway Bridge in Tampa after impact by a 609-foot 

freighter, and the drop of a 100-foot section o f the Mianus River Bridge into the water 

below in 1983 (Hellier, 1995). It becomes more and more obvious that strides must be made
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to develop reliable procedures for determining a bridge’s structural condition, and 

subsequently ascertaining it’s load-carrying capacity and potential for repair.

1.3.2 Nondestructive Testing Methods for Bridge Piles

The investigation o f nondestructive testing methods for metals and for concrete was 

begun in the 1930’s, and by the early 1960’s, there was some measure of standardization of 

the experimental procedures and interpretation of the data (Jones, 1962). By the late 1960’s 

and early 1970’s, nondestructive test methods were being readily developed for use in 

quality control testing o f  newly-constructed cast-in-place pile foundations (Davis and Dunn, 

1974). The great majority o f nondestructive testing procedures are based upon the response 

of the material being tested to the introduction of energy into the specimen in various forms. 

Some of the most common forms of input are mechanical impacts or electrical pulses that 

induce stress waves, probes o f the material with ultrasonic or electromagnetic waves, 

penetration o f the material with radiation, and magnetic energy infusion (Thomas, 1995). 

Many excellent references exist in the literature that detail the various methods (Hellier, 

1995; Thomas, 1995; Stain, 1982; Olson and Wright, 1989; Rix etal., 1993; Olson and 

Sack, 1995), and an overview of the nondestructive tests that are most pertinent to pile 

integrity and length assessment will be presented in the following paragraphs.

Parallel Seismic Method. The parallel seismic test, although nondestructive in nature, is 

an intrusive evaluation technique. As such, it is more costly and time-consuming than some 

of the tests that will be described later, but it does have two distinct advantages-it is not 

affected by soil conditions, and there is no limitation on the depth for which it can gather 

information (Stain, 1982). The test procedure consists o f lowering a hydrophone into a
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water-filled, closed-end tube that has been driven into a hole drilled parallel to the pile in 

question. The hydrophone is lowered to a specified depth, then the pile structure is 

impacted with an instrumented hammer, as shown in Figure 1.1. A recording is made of the 

time that it takes the stress wave to reach the hydrophone (both the hydrophone and the 

hammer are connected to a data acquisition system), then the hydrophone is elevated a 

specified distance, and the pile structure is again struck with the instrumented hammer. 

Once again, the travel time for the stress wave to reach the hydrophone is recorded, and the 

process is repeated incrementally—the results are plotted as a graph of depth against stress 

wave transit time (Stain, 1982; Davis, 1997). One obvious requirement for the method to 

work optimally is that the shaft that houses the hydrophone be drilled in very close 

proximity to the pile specimen, so that the stress wave will have to travel through a 

minimum thickness o f soil to be detected.

L >

Figure 1.1: Parallel Seismic Test Setup (Davis, 1997)
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Figure 1.2 shows the type o f plot that is generated in a parallel seismic test When the 

hydrophone is raised to a depth above the bottom of the pile, or when it reaches a depth at 

which there is a defect in the pile, the graph will show a change in the rate o f travel time 

with depth. In Figure 1.2, this is indicated as a change in slope at a depth of approximately 

6 meters, indicating the position o f the pile toe. One can easily see that this test becomes 

attractive for its ease of data interpretation. As Stain states, “Although sometimes 

considered a ‘last resort’ the method is quite sensitive and does have a number of useful 

applications.” (Stain, 1982)
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Figure 1.2: Results of Parallel Seismic Test (Davis, 1997)

Sonic Echo Method. The theory behind the sonic echo test method is fairly intuitive, and 

is based upon measurement o f propagation time o f longitudinal stress waves in a pile. As
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seen in the test setup presented in Figure 1.3, an instrumented hammer is used to strike the 

top of the pile. This transient force input (measured by the force transducer mounted in the 

face o f the hammer) generates a compressive wave that travels down the length o f the pile to 

a reflector, which could be either the end of the pile, or a defect encountered in the pile 

material. The wave is then reflected, and it travels back to the top of the pile, where its 

motion is measured by an accelerometer (displacement and velocity transducers can also be 

used) mounted to the top surface o f the pile. The accelerometer is connected to a data 

acquisition system, and the acceleration time history is observed to determine the time 

required for the reflection to return to the top of the shaft. With this information, the depth 

to the reflector can be calculated according to Equation 1.1:

v • A/

where

z = depth to the reflector,

vc = compression wave velocity for pile material, and 

At = travel time o f the reflected wave.

( 1 . 1 )
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Figure 1.3: Sonic Echo Test Setup

Figure 1.4 shows an acceleration time history recorded at the top of a drilled shaft for the 

study described by Rix et al. in 1993. Using the reflection observed at 9.47 msec and the 

compressive wave velocity for the concrete shaft (that had been previously determined), the 

pile length was easily calculated using Equation 1.1. It is clear that the sonic echo method’s 

simplicity makes it a very attractive nondestructive tool, yet its inherent limitation is also 

clear—the technique can only be used when the top o f the pile under investigation is 

accessible for testing. Further descriptions of the procedure can be found in the works by 

Stain, 1982, Olson and Wright, 1989, and Rix et al., 1993, and a description o f an early pile
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length determination study using the sonic echo method is presented in Alexander’s 1980

paper.

0.4

0.3
At = 9.47 msec

02

-0.3

-0.4

Tims (msec)

Figure 1.4: Acceleration Time History from Sonic Echo Test (Rix et al., 1993)

Sonic Mobility Method. The testing procedure for the sonic mobility method (sometimes 

referred to as the transient dynamic response method or the impulse response method) is 

exactly the same as that for the sonic echo method, but the data is processed in a very 

different manner. For the sonic mobility test, both the force and acceleration data are 

transformed into the frequency domain using a Fast Fourier Transform (FFT) analyzer. The 

results o f these transformations are the force spectrum and the acceleration spectrum; the 

inertance frequency response function (FRF) is defined as the acceleration spectrum divided 

by the force spectrum. Integration of the acceleration spectrum produces the velocity
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spectrum. Dividing this quantity by the force spectrum produces the mobility frequency 

response function, which is the quantity of interest for the sonic mobility test. Equation 1.2 

presents these relationships in mathematical format:

Inertance FRF = ( i ,2a)
/>(/)

Mobility FRF s  = Ai ^  ( i ,2b)
/> ( /)  / « P ( / )

where

A(f) = particle acceleration spectrum, 

P(j) = force spectrum o f  hammer,

V(f) = particle velocity spectrum,

i =  V - T ,  and

co =  27tf  =  the circular frequency.

The frequency response functions are complex-valued quantities, but usually only the 

magnitudes are plotted for use in the sonic mobility method.

Figure 1.5 gives a mobility curve for the same shaft investigated in the sonic echo study 

above, described in Rix et al., 1993. A wealth o f information is contained in a plot such as 

this.
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Figure 1.5: Mobility Curve from Sonic Mobility Test (Rix et al., 1993)

One should notice a series o f peaks with fairly regular spacing at frequencies above about 

200 Hz. These are resonance peaks, and the distance between them, Af, can be used to 

determine the length of the shaft (or the depth to any defects) using Equation 1.3:

z  = •
2 - A f

12
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When the Af value of 107.5 Hz was used to calculate the shaft length, the result agreed very 

well with the length calculated using the sonic echo method. However, transformation of 

the data into the frequency domain made the plotted data much easier to interpret, as is often 

the case. The same information is present in both plots; it is merely presented in a different, 

more easily discemable format in the mobility plot. Additionally, as mentioned above, there 

is more information that can be gathered from the frequency domain data, even though the 

physical testing procedure is exactly the same as that for the sonic echo method. Of course, 

this cost-efficient trait makes the sonic mobility method quite appealing.

The horizontal line superimposed on Figure 1.5 indicates the average value of the 

mobility at higher frequencies, which corresponds inversely to the average impedance of the 

shaft, as seen in Equation 1.4 below (Stain, 1982; Rix et al., 1993). This value can be used 

to calculate the average cross-sectional area of the shaft, providing the mass density and 

compressive wave velocity can be measured or assumed.

N  = -------\------  (1.4)
P c  ■ A c • ‘'c

where

N  = average mobility value at higher frequencies,

pc = mass density of the shaft material, and

Ac = average cross-sectional area of the shaft material.
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Another useful parameter that can be determined from the mobility plot is the low-strain 

stiffness o f the pile, taken from the slope of the initial portion of the trace (Stain, 1982; 

Olson and Wright, 1989; Rix et al., 1993). A convenient point, M, from the low-frequency 

part of the trace is chosen, and its coordinates are used to calculate the low-strain stiffness 

as follows:

^ m o b
2 nfM

V(f )
P( f ) M

(1.5)

where

K„ob ~ low-strain stiffness calculated from mobility plot, 

fM = frequency of chosen point on initial portion of curve, and

V{f )
PW )

= mobility magnitude at fM.
M

The point “M” indicated on Figure 1.5 was used to calculate the low-strain stiffness in the 

1993 study by Rix et al. Although the low-strain stiffness is sometimes much greater than 

the “working load” stiffness because of its low strain level, it can be used as a relative 

measurement. As noted by the authors, “Once a typical value is established for the shafts at 

a site, shafts that have stiffnesses that differ significantly from the typical value can be 

identified as suspect.” (Rix et al., 1993)
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In the early days o f sonic mobility testing, rather than using an instrumented hammer to 

produce an impact force on a pile, a mechanical vibrator was often employed to apply a 

sinusoidal force to the pile. In fact, the testing method used to be called simply “vibration 

testing” (Davis and Dunn, 1974; Stain, 1982). The vibrator was driven by a sine wave 

generator capable o f delivering sinusoidal signals over a wide range of frequencies. A 

starting frequency would be chosen, the pile would be vibrated and its response monitored, 

then the frequency would be changed and the pile vibrated again at the new frequency. This 

process would be repeated throughout the frequency range o f interest until a mobility plot 

could be produced similar to that shown in Figure 1.5. This method worked well and was 

especially useful since modem, portable FFT analyzers were not available at the time. The 

equipment used was quite cumbersome, however, and the time and labor required to 

perform the test made it a somewhat costly venture. The advent of the portable FFT 

analyzer, and the realization that a hammer impact would impart a signal containing energy 

at a wide range of frequencies greatly increased the appeal o f the sonic mobility method. 

Detailed descriptions of the “vibration test method” and its underlying principles can be 

found in Davis and Dunn, 1974, and Stain, 1982.

Impedance Log Tests. The impedance log method is another nondestructive procedure 

that makes use o f the same physical data gathered in sonic echo and sonic mobility tests. 

Once again, it is only the data processing technique that differs. Impedance log plots are 

quite interesting in that they create a “picture” of the pile in question by mathematically 

manipulating the velocity time data collected at the top o f the pile. The basic principle 

employed is that changes in mechanical impedance along the length o f the pile will produce
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“reflection coefficients” that can be observed when the velocity time history is processed in 

a certain manner (Rix et al., 1993). First, a theoretical mobility plot is calculated and 

plotted for an unflawed, infinitely long pile of the same diameter and subjected to the same 

surrounding soil conditions as the pile under investigation. Resonance peaks that are 

apparent in the experimental mobility plot will not appear in the theoretical plot since there 

are no reflection points present in an infinitely long pile that is free of defects. The lack of 

reflective surfaces also influences the shape o f the theoretical plot, causing it to depend only 

on the initial impact and the response of the surrounding soil. Next, this theoretical curve is 

subtracted from the curve produced using the experimental data. The shape of the 

experimental curve includes the effects of the initial impact, the soil response, and the 

reflective surfaces, so after subtracting one from the other, what remains is a curve 

containing only the effect o f the reflective surfaces (any defects and the end of the pile).

This association is represented by Equation 1.6 (Rix et al., 1993):

In the next step, the inverse FFT of the reflected curve is calculated, producing the 

impulse response, or time-domain velocity response of the reflected signal. This represents 

a time history of the reflections that return to the top of the pile, and is called a “relative 

reflectogram” (Rix et al., 1993). Reflection coefficients corresponding to changes in the 

pile impedance along its length are then determined by scaling the relative reflectogram.

/  theoreticalJ  reflected \

( 1.6)
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Equation 1.7 is subsequently used to backcalculate the impedance as a function o f time (Rix 

et al., 1993):

where

Z(t) = impedance as a function of time,

Z(0) = nominal impedance at the top of the shaft, and

R(t) = reflection coefficients from the scaled relative reflectogram.

Lastly, Z(t) is converted from a function of time to a function of depth, using the 

compressive wave velocity, to create the impedance log, which is a “map” of the impedance 

along the depth o f the pile. Assuming as before that the mass density and the compressive 

wave velocity are known, impedance changes that are observed indicate changes in the 

cross-sectional area o f the pile.

Figure 1.6 shows the theoretical and experimental mobility curves for the investigation 

described by Rix et al. in 1993. Notice the absence of resonance peaks in the theoretical 

curve. The corresponding impedance log is presented in Figure 1.7. As stated previously, 

the impedance log takes a sort of “mathematical picture” of a cross section o f the pile. One 

can observe from the figure that the actual diameter of the shaft was larger than the reported 

nominal diameter. After discovering this situation, field notes taken during construction 

were checked, and it was discovered that the actual diameter shown in the impedance log 

was consistent with the volume o f concrete poured.
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Figure 1.6: Experimental and Theoretical Mobility Curves (Rix et al., 1993)
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Figure 1.7: Impedance Log (Rix et al., 1993) 
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The impedance log is very useful for indicating the presence of bulbs or reductions in 

diameter along the length of a pile, and perhaps its greatest value stems from the fact that it 

can be produced from the data that has already been collected for a sonic mobility test. A 

thorough explanation o f this method is detailed in Rix et al., 1993, from which this summary 

was assembled. Another example o f the use of impedance logs as a nondestructive tool is 

given in Davis’s 1997 paper.

Velocity Reflector Method. One nondestructive method that has received scant mention 

in the literature, but that seems worthy of further investigation, is the velocity reflector 

method. The actual testing procedure for this method is the same as for the sonic echo and 

sonic mobility tests, but a different data-processing operation is employed. Raw velocity

time data is subjected to the FFT routine two times in succession “to produce a plot of the 

most significant stress wave velocity reflectors encountered down the pile shaft.” (Davis, 

1997) The one plot that Davis shows to illustrate this method contains a single strong peak 

corresponding to the pile toe depth- he claims that this was the most successful method of 

several that he tried to determine pile tip elevations.

Considering the various advantages and disadvantages of each of the tests described 

above makes it clear that Stain’s remarks of 1982 are still very appropriate today: “The old 

saying ‘there are horses for courses’ applies equally to integrity tests and the engineer with 

an appreciation of the different techniques will be able to select an appropriate programme 

(sic) which might well include more than one type of te st” (Stain, 1982)
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1.3.3 Recent Studies of Pile Integrity Assessment and Length Determination

Each of the last four nondestructive test methods described above was initially developed 

for piles whose top surfaces are exposed and free to be impacted and instrumented. The 

parallel seismic method does not bear this limitation, but it is intrusive and costly as 

mentioned before. Three relatively recent studies have been performed concerning 

nonintrusive pile integrity assessment and length determination for those piles with 

inaccessible top surfaces. These three studies, two of which deal with timber piles, and one 

that deals with concrete drilled shafts, will be briefly summarized below.

Finno described a study on a test section at the National Geotechnical Experimentation 

Site at Northwestern University containing five drilled shafts of varying lengths and 

diameters (Finno, 1997). He evaluated the capabilities o f using the sonic mobility method 

(referred to in Finno’s work as the impulse response method) to determine integrity of piles 

both without pile caps (accessible-head condition), and with pile caps (inaccessible-head 

condition). For the accessible-head condition, he impacted the top of the shaft with an 

instrumented hammer and measured particle velocity with a geophone on the same surface. 

After completion of the accessible-head tests, reinforced concrete pile caps were poured, 

and similar tests were conducted from the tops of the pile caps.

In his discussion of the sonic mobility method, Finno stated, “Because of a shaft’s 

cylindrical shape, elastic theory indicates that a prismatic deep foundation has a constant 

frequency spacing between resonant peaks that is a function of the shaft length and 

propagating wave velocity, if  the induced wave lengths are greater than the diameter of the 

shaft [i.e. Equation 1.3].” He went on to say that resolution of sonic mobility signals can be
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defined in terms of the relative heights o f the resonance peaks and valleys in the mobility 

plot, mentioning that “[hjigher signal resolution makes the resonant peaks easier to 

distinguish, and thus makes it easier to interpret pile length and location of apparent 

anomalies.”

The presence of the pile cap for the inaccessible-head tests created two notable effects on 

the mobility plots. First, the average mobility and the resolution both decreased, which 

Finno attributed to the increased mass of the pile cap, which forms an impedance change at 

the juncture of the shaft and the pile cap. He stated that this impedance difference “causes 

an incident wave to reflect, resulting in less energy being transmitted down the shaft.”

The second observable effect of the pile cap was a marked change in shape of the 

mobility plot. Rather than the constant magnitude o f resonance peaks and valleys that 

appear in the accessible-head plots, the inaccessible-head plots contained “peaks which 

follow an exponentially decreasing trend in the lower frequency region.” Finno suggested 

that this discrepancy should be attributed to the fact that the pile caps transform the one

dimensional wave propagation response of an isolated drilled shaft to a more three- 

dimensional wave propagation response for the shaft/pile cap system. He noted that at 

higher frequencies, the wavelengths might not be greater than the dimensions of the pile 

cap, thus invalidating the use of one-dimensional wave theory.

This notion led Finno to determine a “cutoff” frequency for the inaccessible-head tests, 

above which no reliable information could be ascertained concerning an underlying drilled 

shaft. From a comparison of experimentally-derived mobility curves to mobility curves 

obtained from numerical simulation of the inaccessible-head tests, Finno was able to
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identify cutoff frequencies by observing “where the trends o f an experimental mobility 

curve diverge from the corresponding simulated curve, since the simulation is based on one

dimensional wave propagation which does not consider surface wave or three dimensional 

effects.” He then used the cutoff frequencies observed for the various shaft and pile cap 

dimensions to develop empirical relationships for the cutoff frequency “based on geometric 

relations and the idea that one-dimensional conditions are satisfied when the wavelength is 

greater than or equal to the diameter of the shaft.” His proposed relation is given below:

where

f c = cutoff frequency,

ve = compressive wave velocity,

Ac = wavelength at which wave propagation in a cylindrical rod is no longer one 

dimensional,

effective diameter of pile cap/shaft system,

D = diameter of the shaft,

Os = factor to account for the plan area o f the pile cap relative to the area of the shaft, 

and

a, = factor to account for the relative thickness o f the pile cap.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

a , and a t are defined as follows:

a  = Aeff 
1

(1.9)

where

Aeff= effective area of the pile cap.

= 1 + 1 1 ( 1. 10)

where

B = thickness o f the pile cap.

It can be observed from the above relations that as the ratio of the pile cap tributary area 

to the shaft area increases, the effective diameter of the shaft increases because of the 

increase in a,. This, in turn, causes the cutoff frequency to approach zero. Finno pointed 

out that as the cutoff frequency becomes small, three-dimensional effects begin to mask 

resonances from the toe of the shaft. He stated that a , is usually larger than ctt and therefore 

has a greater effect on the cutoff frequency.

Finno concluded that the sonic mobility method can indeed be used to assess the 

integrity o f  drilled shafts with inaccessible heads if the geometry o f the shaft/pile cap
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system does not violate one-dimensional wave propagation conditions. He did recognize, 

however, that certain factors could limit the overall applicability of the method, including 

the length-to-diameter ratio o f the shaft, the soil stratigraphy, and the shear wave velocity of 

the soil.

Holt et al. (1994) examined the properties of dispersive stress wave propagation to 

determine the lengths of in-service timber piles. Dispersion is a wave phenomenon that 

occurs when different frequencies in a signal travel at different velocities, and flexural 

waves created by a transverse impact on a bounded medium (such as a bridge pile) are 

dispersive in nature. The authors used a mathematical technique called the Short Kernel 

Method (SKM) (developed by Douglas in a previous study of layered media (Douglas and 

Eller, 1986; Eddy, 1988; Douglas et al., 1989) to process the dispersive flexural waves 

induced on timber piles to determine their overall length.

Holt et al. stated that the Fourier transform technique has traditionally been employed in 

the signal analysis of dispersive waves, but they contend that it is not well suited for this 

purpose because of its inability to distinguish between multiples of the period corresponding 

to a particular frequency. In the Fourier transform method, relative phase angles are 

computed for individual frequencies between two measurement points and used to calculate 

the time required for the frequencies to traverse the measured distance. Velocity can be 

determined from this information, but according to Holt et al., “it is not possible to tell 

whether the computed phase is the actual value or whether the actual value is the computed 

value plus some integer multiple o f the frequency’s period.” (Holt et al., 1994) The authors 

reported that the Short Kernel Method overcomes this limitation successfully.
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Figure 1.8 is an illustration of the test setup Holt et al. used in their investigation. As 

shown in the figure, timber piles were impacted transversely, rather than longitudinally, and 

accelerometers were spaced at pre-defined points along the exposed length o f the pile. The 

transverse impact created flexural waves, in contrast to all o f the methods described earlier, 

which made use o f axial waves.

I Bridge ■■■Glnte” X
Bent Cap___________

Impact

Accelerometers

Figure 1.8: Field-Test Setup used by Holt et al. (Holt et al., 1994)

The authors mention that if bending waves were not dispersive, the data processing 

required would be similar to that o f the sonic echo or sonic mobility methods, where wave 

speeds could be calculated simply from observation o f the times at which the waves passed 

by the two accelerometers. However, dispersive waves continually change form as they 

travel, and tracking an individual dispersive wave becomes a daunting process considering 

the many reflections that are present after the pile is impacted. Holt et al. state that a
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dispersive wave must be separated into its harmonic components to correctly distinguish the 

phase velocities o f its different frequencies, and that there are two methods to do so: the 

Fourier phase method and the Short Kernel Method. The authors chose to use the SKM for 

their investigation.

The Short Kernel Method is based on the cross-correlation procedure detailed by Bendat 

and Piersol (1980). Equation 1.11 gives the mathematical expression for a single value of 

the SKM at a particular frequency:

SKM(y, k) = £ / ( r , ) - g [ ( r ,  + y -A /),£ ]-A f (1.11)
i-i

where

SKM(/',/t) = /b  term of the cross-correlation currently being performed at the k?' 

frequency,

/  = time record from one accelerometer, 

g = fragment o f kernel used to perform the cross-correlation,

N? = number of data points in f,

N\ = number of data points in g, and 

At = time step between data points.

Olson et al. (1995) summarized the principles o f the SKM in the following manner:

The method is similar to narrow band cross-correlation procedures between the 
input (the hammer blow) and the output (receiver response(s)). However, 
instead of measuring the hammer blow, a periodic function of 1 or more cycles
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is used as the “Kernel Seed,’ and a number of seeds for frequencies ranging 
from 500 to 4000 Hz may be cross-correlated with the receiver responses. The 
SKM correlation procedure amplifies bending wave energy responses with the 
selected seed frequency and in a way bandpass filters the response data since 
frequencies higher and lower than the seeid frequency are filtered out. Two 
receivers are used in order to measure the bending wave velocity (distance 
divided by elapsed time between the bending wave arrival peaks) between them 
as determined from the peak responses in the cross-correlated data of the two 
receivers. The use of two receivers also allows one to determine whether the 
reflections of the bending wave energy are traveling back up the pile after 
reflection from the pile bottom, or if the bending wave energy is traveling back 
down the pile after reflection from the pile top or beam. This is identical to the 
procedures used in Sonic Echo tests when two receivers are used. The 
dispersion of the bending wave velocity is thus accounted for by calculating the 
bending wave velocity for each kernel seed frequency.

Figures 1.9 and 1.10, taken from the study by Holt et al., give a visual description o f the 

use of the SKM. Figure 1.9 shows the acceleration time histories of the two accelerometers 

before application of the SKM (the top trace is from the accelerometer closest to the pile 

head, while the bottom trace is from the accelerometer closest to the ground surface). The 

authors state that regions A and A' record the first passage of the wave that travels 

downward from the impact location, regions B and B' record the wave that first traveled 

upward from the impact, was reflected from the pile head/bent cap juncture, then traveled 

downward through the accelerometer locations, and regions C and C' are the reflection from 

the pile toe of the wave that was first recorded in regions A and A'.
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Figure 1.9: Time Records from Two Accelerometers (Holt et al., 1994)
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Figure 1.10: SKM Plot Using a 1-cycle 500-Hz Kernel (Holt et al., 1994)

In Figure 1.10, the signals have been processed by the SKM, assuming a 1-cycle 500 Hz 

kernel; the solid line represents the top accelerometer and the dotted line represents the
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bottom accelerometer. Holt et al. stated that “the SKM has acted as a ‘sieve,’ in that it 

extracted the 500-Hz component from the signals and displayed its approximate location 

inside both time records.” (Holt et al., 1994)

The time difference between Points D and E of Figure 1.10 is divided into the 

accelerometer spacing to calculate the phase velocity. This quantity is then used to 

determine the pile length using Point F or G, which represent “the return of the 500-Hz 

frequency from the pile toe,” identified by noticing that the trace from the bottom 

accelerometer (dotted line) leads the trace o f the top accelerometer (solid line) at these 

points. The pile length can be determined using the time difference between Points D and G 

(or E and F) and the velocity that was computed previously. Equation 1.12 details the 

calculation:

C . • Npts • At
OL = Tb + — — £ -------- (1.12)

where

OL = overall pile length,

Tb = distance from pile head to accelerometer being used for calculation, 

Cp = computed phase velocity,

Npts = number of data points between Points D and G (or E and F), and 

At = acceleration trace time step.
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The authors were careful to note that:

In choosing the negative peaks F and G in Figure [1.10], the assumption was made that 
the 500-Hz component reverses its algebraic sign once it is reflected from the pile toe. 
This may not always be the case; sign reversal is possibly dependent upon the degree of 
confinement of the embedded portion of the pile. Both assumptions were made during 
the analysis and a range o f lengths [was] reported.

In all, Holt et al. tested 40 piles, 14 of which could not be analyzed “either because of 

bad signals, because no return wave was found in their time records, or the pile’s records 

were not clear enough for identification.” For the remaining 26 piles, the percent difference 

obtained between lengths computed with the SKM and those obtained from installation 

records or from direct measurement o f piles that were pulled ranged from -11.8 percent to 

+8.5 percent. Although these results indicate that the SKM was a relatively successful tool 

for determining in-place timber pile lengths, it does have some notable limitations. The fact 

that it is based on observation of peaks and valleys in time-domain waveforms makes it 

somewhat subjective and imprecise in nature, especially for situations in which the 

waveforms are visually complex. Olson et al. (1995) expressed this shortcoming by 

commenting that it can be very difficult to identify propagation paths of flexural waves, 

especially if there are several reflecting boundaries such as the pile top, the groundline, pile 

defects, etc. Also, it is sometimes difficult to impact the piles in such a way as to produce 

recognizable signals, as evidenced by the 14 piles in this study that could not be analyzed.

As stated, though, the method was somewhat successful for length determination in timber 

piles.
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Pandey et al. (1998) described the use o f a longitudinal stress wave technique to 

determine the length of in-place timber piles, with the ultimate goal of calculating the scour 

resistance o f timber bridges. The authors reported that longitudinal stress waves, produced 

by a hammer impact, travel along the length of a timber pile at a velocity that depends on 

pile density, moisture content, and material quality. They further stated that, “[t]o adapt the 

NDE [nondestructive evaluation] technique for pile length determination, modifications to 

existing impact methods and sensor attachments were necessary, coupled with further 

testing on piles of known lengths.”

Figure 1.11 shows the test setup used in the study; the impacting modification is clear 

from the figure. Instead of striking the pile directly, a lag bolt was inserted into the pile at a 

45 degree angle, and the lag bolt was struck with the instrumented hammer. According to 

the authors, this impact arrangement induced a wave in the pile that had enough energy in 

the longitudinal direction to be considered a longitudinal wave. The length determination 

was then evaluated by measuring the time required for the wave to travel to the base of the 

pile and be reflected back along the pile length. This time, coupled with the stress wave 

velocity, was used to calculate the length o f the piles. The authors report that the accuracy 

of their length determinations was ±15 percent. This method, then, seems to work 

reasonably well for timber piles, but its applicability to piles of other types is unknown.
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Figure 1.11: Setup for Pile Length Data Collection Used by Pandey et al.
(Pandey et al., 1998)

1.3.4 Modal Analysis for Structural Identification

Modal analysis is a technique that employs results from the measurement o f the vibration 

behavior of a structural system to aid in identification of the system characteristics that 

govern that behavior. This approach possesses several advantages over its predecessors for 

the pile length determination problem, making it attractive for use in this arena. First, it is 

well-suited to the systematic examination o f impact data, which is easily measured,
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recorded, and stored, even in typical field conditions. Also, the analysis process is easily 

implemented for flexural data, collected as a result o f a transverse impact on the pile, so that 

access to the top o f the pile is not required. Additionally, and most importantly, the 

unknown embedment length problem seems a prime candidate for solution via modal 

analysis techniques because all of the properties o f the pile-soil system are known or can be 

well-characterized, except for one—the embedded length o f the pile. The modal parameters 

(natural frequency, damping, and mode shapes) o f a structural system can be expressed as a 

mathematical combination of its physical traits, so that if one of the properties (such as the 

embedded length of a pile) changes, the modal parameters should change accordingly. The 

modal analysis approach, whose hallmark is the identification o f the modal parameters of a 

system, lends itself well to isolation of the unknown property, since once the modal 

parameters are known, the unknown trait can be backcalculated from them. Finally, an 

additional advantage of the use o f modal analysis for the pile length determination study is 

that it relies not on the subjective visual identification o f graphical trends (as is the case for 

many of the techniques previously employed to address this problem), but on an objective 

analysis o f the measured data. A much more detailed discussion of modal analysis and the 

theories governing its development, as well as its suitability for the pile length 

determination problem will be presented in Chapter III.

Although no previous studies have been performed on the use of the modal analysis 

technique with flexural waves for length determination o f in-place piles (to the author’s 

knowledge), several papers do exist in the literature that describe the use of this technique 

for other types o f structural identification purposes. Summaries of a selected few of theses
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publications will be outlined in Chapter III; as stated above, it will also contain a detailed 

description o f the modal analysis technique as it relates to the objectives of the study 

described in this report.
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CHAPTERU

TEST CONFIGURATION

2.1 Small-Scale Pile Facility 

A small-scale pile facility was constructed in the Civil Engineering Laboratories 

Building on the Georgia Institute of Technology campus so that experimental pile response 

data could be gathered in a controlled laboratory environment. A concrete pit measuring 12 

ft long by 9 ft wide by 5 ft deep comprised the “embedment” portion o f the facility; the 

lower 4.5 ft o f the pit was located beneath the surface of the floor, while the remaining 6 in. 

extended above the floor and formed a “rim” surrounding the test fixture. Figure 2.1 shows 

a photograph o f the test fixture, while end and plan views o f the apparatus are illustrated in 

Figures 2.2 and 2.3.

As seen in the figures, two vertical steel channel sections (C9xl3.4) were bolted to the 

rim of the pit on both of the 9-ft sides. Two horizontal W 10x45 sections, having plates 

welded to each end, ran parallel to the 12-ft sides, and the plates were bolted to the top 

portion of the channel sections at either end of the pit. The horizontal W 10x45 sections 

were positioned such that the web assumed a vertical orientation, and the bottom flange of 

each section was suspended 5 ft above the rim of the pit. Two 3 ft x 2 ft x 1 in thick plates 

were bolted to the bottom flanges of both W10x45 members, spanning the gap between
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them. To further stiffen the test frame, two 2.5 in. thick plates were welded along the length 

of the top flange o f the W10x45 members, then four S3x5.7 sections were welded at angles 

above the plates, as shown in Figure 2.3. Additional angled bracing was provided near the 

bottom of the fixture as shown in Figures 2.1 and 2.2. Once the frame was fully assembled, 

the flanges o f five vertical model pile sections were welded to the outside flange edges of 

each of the two W 10x45 horizontal sections, resulting in a total of ten test specimens. One 

pile was tested in this condition (without soil; details of the test procedure will be outlined 

in Chapter IV), then the pit was filled with Chattahoochee River Sand (to be fully described 

later in this chapter) and all the piles were tested in the embedded configuration.

Figure 2.1 Experimental Facility for Testing Small-Scale Piles
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Figure 2.2 End View of Experimental Facility for Testing Small-Scale Piles
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Figure 2.3 Plan View of Experimental Facility for Testing Small-Scale Piles

2.2 Test Pile Sections 

Pile sections chosen for laboratory testing were selected based on bridge design 

information provided by personnel at the Georgia Department o f Transportation (DOT) 

(Gratton, 1994). They indicated that a typical steel H pile section is an HP12x53 measuring
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15 to 60 ft in length, with a concrete casement from the groundline to 2 ft above the 

waterline. These dimensions yield an average ratio of length to section depth (L/D) o f 37.5. 

The test piles ranged in length from 6 ft to 10ft, with an average of 8 ft. To determine the 

optimum model pile section depth, this 8-ft average length was divided by the L/D ratio of 

37.5, yielding an ideal value of 2.6 in. Based on that dimension, S3x5.7 sections were 

chosen for the representative test pile sections. Two W4xl3.0 sections were also included 

to determine the effect of section size on the pile length evaluation method being developed.

Figure 2.4 shows right and left elevations of the test facility and the arrangement of the 

test piles within the pit. As stated previously, all piles were welded to the outer flange 

edges of the W10x45 sections, and all had exposed lengths of 5 ft. Piles A through E, as 

designated in the figure, were S3x5.7 sections with embedment lengths of 1 ft for Pile A to 

5 ft for Pile E, increasing in 1 ft increments. Pile F, an S3x5.7 section that rested on the 

concrete pit bottom to simulate an end-bearing pile, was included to examine the influence 

of a “fixed” end condition on pile response, as opposed to the response of the floating end 

condition of Piles A through E. Piles G and H were S3x5.7 sections of length 9 ft and 7 ft, 

respectively, and each had a 6-in diameter concrete casing surrounding the portion of the 

pile just above the groundline, as shown in the figure. Casings such as these are sometimes 

used on bridges to protect steel sections from corrosion, and they were included in the test 

series to investigate their effects on pile response. As mentioned before, two W4xl3 

sections, Piles I and J, were included to distinguish their response from that o f the smaller 

S3x5.7 piles o f the same lengths (Piles B and D).
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Figure 2.4 Elevation Views of Small-Scale Pile Test Facility

2.3 Soil Properties

2.3.1 Sand Fill

The soil used for embedment o f the model pile sections was a Chattahoochee River Sand 

which was visually classified as a white-tan, medium to fine, poorly graded, micaceous sand 

(SP). Figure 2.5 shows the grain size distribution for the sand.
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Figure 2.5 Grain Size Distribution for Chattahoochee River Sand

The sand’s maximum dry density was obtained according to ASTM D 4253-93 (ASTM, 

1993), with the average value of six tests computed as 98.6 pcf. ASTM D 4254-91 (ASTM, 

1991) was used to determine the minimum dry density; its average value was found to be 

80.8 pcf (three tests were performed using Method A and three using Method B o f this 

standard).

2.3.2 Sand Placement

The sand was placed into the pit in 6-in. lifts, and compacted with a Wacker Corporation 

vibratory plate compactor having a plate size o f approximately 18 inches square. This small 

plate size allowed the operator to carefully maneuver around the test piles to ensure uniform
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compaction. Lifts were compacted to greater than 95 percent of the maximum dry density; 

density control tests were performed with a nuclear moisture-density gauge. It should be 

noted that rather than driving the piles, as would normally be done in the field, the sand was 

compacted around pre-placed piles for the embedded tests, so that “perfect insertion” was 

the method used to embed the piles.

2.4 Equipment and Instrumentation

2.4.1 Impact Hammer

Figure 2.6 shows a schematic of the general test setup used to collect experimental pile 

response data on the small-scale model piles. The hammer used to impart a lateral impact to 

the piles was a PCB Piezotronics, Inc. Model 086C03 modally tuned impact hammer with a 

built-in force transducer. Force transducers detect the magnitude of the force felt by the 

hammer, which is assumed to be equal and opposite to that felt by the test specimen (Ewins, 

1985). Figure 2.7 is an illustration showing the significant parts of a typical impact 

hammer.
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Figure 2.7 Impact Hammer Details (Ewins, 1985)
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The PCB hammer used for the present tests measured 8 inches in length, with a head 

diameter of 0.6 in and a tip diameter of 0.25 in, and its nominal sensitivity was 10 mV/lbf. 

A photograph of the hammer is presented in Figure 2.8.

Figure 2.8 Impact Hammer Used for Model Pile Tests
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Three interchangeable hammer tips were included with the hammer: one rubber tip, one 

hard plastic tip, and one metal tip were available. Each tip excites a different frequency 

range on impact; for the model pile tests the metal tip was used because of its ability to 

excite higher frequencies than the others. Figure 2.9 shows the general shape of the impact 

force vs. time curves and the frequency spectra for the three available hammer tips (this 

figure was taken from Dassing’s 1988 publication for explanation purposes, therefore the 

magnitudes do not correspond to the actual hammer used for the model pile tests). It can be 

seen from the figure that the frequency spectrum for the steel tip drops off much more 

gradually than do those for the other tips, therefore the steel tip is useful up to much higher 

frequencies. In general, the upper end of the usable frequency range is indicated as the 

frequency at which the spectrum magnitude has decayed by 10 to 20 dB (Ewins, 1985). The 

measured frequency spectrum of the PCB 086C03 hammer used for the present tests is given 

in Figure 2.10, and close inspection reveals that the upper limit of the usable frequency 

range is approximately 4 kHz, since the curve decays 20 dB (from the relatively flat portion) 

only slightly after that value.
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Figure 2.9 Force-Time Curves and Frequency Spectra for Various Hammer Tips 
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Figure 2.10 Measured Frequency Spectrum for PCB 068C03 Impact Hammer
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2.42  Piezoelectric Accelerometer

A piezoelectric material is one that generates an electrical charge across its end faces 

when exposed to a mechanical stress. These materials are usually either natural or synthetic 

crystals, and accelerometers containing them can be designed such that the stress induced 

(and thus the electrical charge) is proportional to the acceleration o f the test specimen. To 

achieve this design, a seismic mass is placed above the crystals as shown in Figure 2.11.

PrecompresBor Spring

SeisnicMaa

Crytuls

Body

Figure 2.11 Cutaway of Accelerometer and Corresponding Dynamic Model (Ewins, 1985)

The force exerted on the crystals is the seismic mass’s inertia force, m z , and as long as the 

body of the accelerometer and the seismic mass move together ( x = z ) the transducer 

output will be proportional to x (the acceleration of the accelerometer body) (Ewins, 1985). 

These two accelerations are essentially equal up to approximately 33 percent of the 

accelerometer’s resonant frequency (Ewins, 1985); it is important to remember this when 

noting the manufacturer’s recorded resonant frequency. In general, the resonant frequency 

depends on the test specimen’s material characteristics and on the method used to mount the
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accelerometer to the specimen. Usually, the manufacturer’s recorded resonant frequency is 

the lowest natural frequency reported when the accelerometer is attached to a rigid base. 

Thus it is wise to make the accelerometer attachment to the test specimen as rigid as 

possible to utilize the largest valid frequency range.

For the tests described herein, a Wilcoxon Research Model 73 2A piezoelectric

accelerometer was chosen to measure pile response. This accelerometer had a recorded

resonant frequency of 60 kHz, its usable frequency range was 2 Hz to 15 kHz, and its

nominal sensitivity was 10 mV/g. Several options were available for fixing the

accelerometer to the test structure, each having unique advantages and disadvantages.

Figure 2 .12(a) shows some of the techniques that have been used in the past, and it is easy to

see from'Figure 2.12(b) that the mounting method has a measurable effect on structural

response. The positions o f the resonance peaks for the various curves in the figure give a

relative indication of the usable frequency range, and it is clear from the figure that, in

general, stud-mounting provides the highest range. However, it is not always convenient to

drill holes into the test specimen at each accelerometer location, especially if there are many

measurement points. Also, as stated by Ewins (Ewins, 1985):

The particularly high-frequency capability o f the screwed stud attachment can only be 
attained if the transducer is affixed exactly normal to the structure surface so that 
there is a high stiffness contact between the two components. If, for example, the 
axis o f the tapped hole is not normal to the surface, then the misalignment which 
results will cause a poor contact region with a corresponding loss o f stiffness and of 
high-frequency range.

Achieving this high degree of accuracy when drilling and tapping stud holes is sometimes a 

difficult task, therefore, more convenient mounting methods usually warrant consideration.
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Figure 2.12 (a) Methods o f Accelerometer Attachment
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(Ewins, 1985)

With the aforementioned limitations in mind, various mounting methods were 

investigated for the model pile tests, and the results of these tests are given in Figure 2.13. 

It was decided to use the mounting adhesive Loctite 422* since it was easily applied and 

removed, and its usable frequency range was very close to that observed with the stud- 

mounting technique.
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Figure 2.13 Frequency Response Functions for Trial Accelerometer Mounting Methods
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2.5 Digital Signal Analyzer 

A Hewlett-Packard Model 3562A dual-channel dynamic signal analyzer was used to

process the data collected by the force transducer and accelerometer. A photograph of the 

analyzer (along with the power amplifiers for the piezoelectric accelerometers, the impact 

hammer, and the disk drive used to store data for later analysis) is presented in Figure 2.14.

Figure 2.14 Digital Signal Analyzer and Power Amplifiers
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Analog time history signals (force vs. time and acceleration vs. time) were sampled and 

digitized by the analyzer, where the record lengths and the sampling rate governed the 

frequency range and resolution o f the analysis. Each time record was multiplied by a 

“window” function; specifically, a uniform (rectangular) window spanning the short 

duration of the impact was used to multiply the force record, while the acceleration record 

was multiplied by an exponentially decaying window. The windowing functions served to 

taper the data, which makes it more amenable to processing with the Fast Fourier Transform 

(FFT), which is the next step in the analysis process. Time signals were converted to the 

frequency domain using the FFT since data in the frequency domain is often more readily 

interpreted than in the time domain. The particulars of the windowing functions and the 

FFT process as they relate to modal analysis will be discussed in greater detail in the next 

chapter. Suffice it to say that there are numerous books and papers to which the interested 

reader can refer for detailed information on digital signal processing techniques; three 

excellent references are the works by Bendat and Piersol, 1980, Bendat and Piersol, 1986, 

and Halvorsen and Brown, 1977.
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CHAPTER IE

MODAL ANALYSIS 

3.1 Summary of Modal Analysis Theory

3.1.1 General Concepts

Modal analysis can be broadly described as the process of examining the vibration 

response o f a system to a prescribed dynamic input, using this response to identify the 

modal characteristics of the system (natural frequencies, damping, and mode shapes), then 

creating a spatial model of the system from the modal information. The applications of 

modal testing are widespread, though perhaps its main use has been in the vibration control 

arena, where excessive machinery and structural vibrations have been prevented and 

eliminated by proper identification (and subsequent manipulation) of the system modal 

model. In many instances, modal analyses are undertaken to validate (or invalidate) the 

predicted responses of a finite element or other theoretical model. Once the response to 

simple forms o f excitation are correlated between the finite element and experimental modal 

studies, the finite element model can be used to predict a structure’s response to more 

complicated loading patterns. Results o f modal tests can also be used to generate models
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that predict the vibration response to a structural modification, before the original structure 

is actually altered. It is obvious that modal analysis is a powerful engineering tool.

Figure 3.1 illustrates the three major steps involved in the modal analysis process. As 

seen in the figure, the first step is to form the response model; this is done using results from 

a series o f vibration tests performed on the structure under investigation. For modal testing, 

the vibration response is most commonly expressed in the form of a frequency response 

function (FRF) measurement, denoted as H^, and defined as follows:

. . . .  Response at Position j  «,(<y)HAco) = ------   -  = —-----  (3.1)
Excitation at Position k Pk(co)

where

U j ( o j )  = acceleration at designated response position j (as a function of circular 

frequency,co), and

Pk (co) -  force at a designated source position k (as a function of circular frequency, co).

Here, acceleration is designated as the response parameter, but displacement or velocity data 

can be used with equal validity if it is more conveniently measured.
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H „ l ( Q )

H i m  ( ^ )

H nm  ( ^ )

Modal Model
Natural Frequency 
Modal Damping 
Mode Shape }

for each mode

Spatial Model

I
it
Li

Figure 3.1 Conceptual Approach Used in Modal Analysis (Rix et al., 1996)

A more detailed expression for the frequency response functions of a structural system 

can be derived from its equations o f motion. Details o f the derivation will not be presented 

here, but the general steps in the process will be discussed. Equation 3.2 gives the 

mathematical expression for the equations o f motion:
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(3.2)

where

[M\ = the mass matrix for the structural system,

[C] = the system’s viscous damping matrix,

[K\ = the system stiffness matrix,

{P(t)} = vector of time-varying system forces, and

{u(t)}, {u(t) }, {u(t)} = the time-varying acceleration, velocity, and displacement 

vectors, respectively, for all degrees o f freedom being considered.

Of course, these equations are for a multi-degree-of-freedom (MDOF) system; those for a 

single-degree-of-ffeedom (SDOF) system would have single values for the various 

quantities rather than matrices and vectors. Also, the system damping may be of some form 

other than viscous, (e.g. hysteretic), but viscous damping is included here for generality.

A ffee-vibration analysis of these equations (one for which the forcing function, (P(t)}, 

equals zero) leads to a diagonal matrix of eigenvalues, [A.], containing information about 

both natural frequencies and damping, and an eigenvector matrix, [VP], the columns o f which 

represent the system mode shapes. A forced-vibration analysis may then be performed to 

produce expressions for the displacement quantities u, u , and u in terms o f co, and these 

results may be used to form the frequency response function (FRF) matrix, [Hjk(co)], in the 

manner described in Equation 3.1. It should be noted that the members o f the FRF matrix
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are not constant, but are functions o f frequency, a>. If m is equal to the number of source 

positions on the test structure, and n is the number of response positions, then the structure’s 

FRF matrix contains m x n individual frequency response functions, each of which is 

complex-valued, possessing both magnitude and phase information. In a sense, then, the 

FRF matrix is three-dimensional since each of the member FRF’s is a vector whose length 

depends on the frequency resolution of the vibration measurement. As a matter o f notation, 

if the response is considered in terms of acceleration, the FRF matrix is known as the 

inertance, or accelerance matrix. Velocity-based FRF matrices are referred to as mobility 

matrices, while those FRF matrices containing displacement information are called 

receptance, or admittance matrices.

The following equation, which can be obtained from the operations described above, 

shows the relationship between a system’s accelerance frequency response characteristics 

and its modal properties:

where

Hjk(<o) = the accelerance frequency response function at frequency co, 

r\\ij -  the j*  element of the t* eigenvector {y}r (relative displacement at point j  during 

vibration in mode r),

(3.3)

mr = the r* modal mass,
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kr = the eigenvalue o f the r* mode, and

N = the number of modes (or number of degrees of freedom being considered).

Equation 3.3 forms the basis for all (accelerance) modal analysis studies, since it details 

directly the connection between the frequency response function, which can be easily 

measured, and the modal properties (X,vp) needed to “backcalculate” unknown spatial 

properties (e.g. length, modulus o f elasticity, etc.). Ewins states it this way: “From a purely 

theoretical viewpoint [Equation 3.3] provides an efficient means of predicting response (by 

performing a free vibration analysis first) while from a more practical standpoint, it suggests 

that there may be means o f determining modal properties from [accelerances] which are 

amenable to direct measurement.” (Ewins, 1985)

It should be noted that, as Ewins suggests, it is more practical to measure a forcing 

function and the resulting acceleration it produces on a test specimen than it is to measure 

the quantities necessary to form the specimen’s mass, stiffness, and damping matrices.

Thus, the former values are usually measured and used to compute an accelerance FRF. 

Common practice is to monitor force and acceleration signals for a specific length of time, 

then to employ a dynamic signed analyzer of the type described in Chapter II to convert the 

time-domain signals into the frequency domain using the Fast Fourier Transform (FFT) 

technique. These ffequency-domain values are then substituted into Equation 3.1 to form 

the FRF.

In reality, however, the process is slightly more complicated, due to the fact that 

measurement noise will likely be present in the force and acceleration signals. Halvorsen
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and Brown (Halvorsen and Brown, 1977) present a concise explanation o f this concept, and 

their work is summarized here.

As stated previously, the frequency response function is a measure o f the acceleration 

(output from a given excitation) divided by the input excitation (forcing function). To 

minimize the effect o f noise on the measurement, the frequency response function is formed 

in practice by dividing the cross-spectrum between the input and the output by the power 

spectrum of the input. These quantities are frequency-based, and are computed by 

multiplying the numerator and denominator of the “theoretical” FRF by the complex 

conjugate of the Fourier transform of the input signal. The details of this formulation are 

shown mathematically in the following equation:

H(co) = G,o(Q>) = 1 (3.4)
G,(o) / * ( » ) / ( « )

where

H(co) = frequency response function,

Gto(o)) = cross-spectrum between ift) and oft), 

i(t) = system input as a function of time, 

oft) = system output as a function o f time,

G, (co) = power-spectrum of ift),

1(a)) = Fourier transform of ift),

Of a) = Fourier transform of oft), and
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f  (co) = complex conjugate o f the Fourier transform of ift).

The usefulness o f this form of the equation can be realized by considering that the actual, 

measured input and output signals will contain noise, and may be expressed as follows:

where

H'(co) = measured FRF,

Of co) = Fourier transform of output signal, oft),

N(co) = Fourier transform o f output noise, nft), 

l(co) = Fourier transform of input signal, ift), and 

M(eo) = Fourier transform of input noise, mft),

Y(a>) = Fourier transform of output plus output noise, and 

X(co) = Fourier transform o f input plus input noise.

Multiplying the numerator and denominator of the middle section o f the above equation by 

the complex conjugate o f the denominator (the input plus input noise) gives:

H, _ Q(eo)+N(a>) _ Y(co)
I(co) + M(co) X(co)

(3.5)

H'((o) -  Gu>̂  + Gm^  + G”° ^  + Gnn^  
G< (0) + Gun (0) + Gm (of) + G„ (o )

(3.6)
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where the quantities with double subscripts represent cross-spectra between the specified 

signals and those with a single subscript represent power spectra. If the measurement noise 

signals are noncoherent with each other and with the input signal, then the expected value of 

the cross-spectrum terms containing m and n will equal zero (43) and Equation 3.6 reduces 

to:

where H(co) is the true fiequency response function that is desired. Therefore, if the noise- 

to-signal ratio o f the input signal is very small (much less than 1), the measured FRF will 

approximately equal the true FRF.

The cross-spectrum value between the input and output signals is also a part of another 

important quantity called the coherence function. Qualitatively speaking, the coherence is a 

measure o f how much the output is due to the input, rather than due to noise or other 

spurious sources that are not meant to be a part of the test. The coherence function is 

defined as:

H'(co) = ----- — ——------ =
G,(.a>) + Gm(a)) { | Gm(eo) 

G,{o>)

(3.7)

y

where
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y^((o) = coherence function between input with noise and output with noise,

Gjyfco) = cross-spectrum between input signal with noise and output signal with noise, 

Gx(co) = power spectrum of input signal with noise, and 

Gy(co) = power spectrum of output signal with noise.

The coherence value ranges between 0 and 1; if the system is completely linear and there 

no measurement noise, the coherence value will be 1 for all frequencies. If the input and 

output signals are totally uncorrelated, the value will be zero; the measured value is 

generally somewhere in between. A low coherence value serves as a good indicator that 

signal contamination is occurring and the test setup should be examined carefully.

When performing modal tests, it is common to average several FRF measurements for 

each particular source/receiver combination to reduce the bias error that is inherent in the 

cross-spectrum calculation. Halvorsen and Brown (Halvorsen and Brown, 1977) explain 

this practice, emphasizing its importance for the impulse technique, which relies on an 

impulsive force (an impact) for excitation o f the structure:

It should be pointed out...that there is an inherent bias error associated with the 
computation o f the cross-spectrum and the magnitude of this bias error is inversely 
proportional to the number of averages in the computation. Thus, the greater the 
measurement noise, the greater the number o f averages required to approach the 
expected value o f the cross-spectrum between the input and output measurement 
signals. With measurement techniques employing many averages, the bias error 
can usually be reduced to an insignificant level so that it is only necessary to 
minimize the noise in the measurement o f the input signal. However, if there is 
significant measurement noise and only a few averages are used, then the 
computed values of the cross-spectrum terms involving the noise signals in 
Equation [3.6] can be large relative to the true cross-spectrum, with resulting large 
errors in the measured frequency response function. In general, only a few 
averages are used in the impulse technique; otherwise, one of its major advantages
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-  its speed -  is lost. Therefore, it is important to minimize measurement noise in 
both the input and output signals when using the impulse technique.

3.1.2 Frequency Response Function Display

Because frequency response functions have complex values, a simple two-dimensional 

plot cannot clearly show all three quantities o f interest (magnitude, phase, and frequency) 

simultaneously. Consequently, three types o f graphical output are commonly used for 

display—the first is a Bode plot, in which the magnitude and the phase of the FRF are 

plotted separately but shown together. The second type o f plot is known as a Nyquist plot, 

in which the real part o f the FRF is plotted as the abscissa and the imaginary part is plotted 

as the ordinate. This plot is quite interesting in that as the frequency increases, a circular 

shape is produced. The third common type of data presentation has no unique name, but it 

consists of two plots, one o f the real part of the FRF vs. frequency and one of the imaginary 

part vs. frequency. Figures 3.2, 3.3, and 3.4 show examples of each type of plot for a single- 

degree-of-freedom system.
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Figure 3.2 Bode Plot of Accelerance for Undamped SDOF System (Ewins, 1985)

30

Figure 3.3 Nyquist Plot o f Accelerance for Viscously-Damped SDOF System 
(Ewins, 1985)
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Figure 3.4 Real and Imaginary Parts of Accelerance for Damped SDOF System 
(Ewins, 1985)

Each o f  the plots shown above has distinctive properties worth noting. Perhaps the most 

important are those present in the Bode plot, since this is the type of graphical presentation 

that was chosen for the present study. Obviously the main feature o f Figure 3.2 is the peak 

in the magnitude occurring at 19 Hz, and the corresponding 180° shift in phase at the same 

frequency. These characteristics indicate that a resonance, or natural frequency, of the 

system occurs at this point All Bode plots will exhibit these attributes at resonance 

locations, but not ail will be as “clean” as the undamped SDOF plot of Figure 3.2. If 

damping is present, the peak will be rounded to some degree, and phase angles will deviate
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from exactly 0° or 180°, but a 180° phase shift should occur at every resonance location 

nonetheless. Bode plots for multi-degree-of-freedom systems can become quite intricate, 

especially when there are several closely-spaced modes. In general, though, plots of MDOF 

systems may be interpreted as the superposition of several SDOF system plots, as illustrated 

in Figure 3.5.

2C •

100
FREQUENCY (Hz)

Figure 3.5 Mobility Plot for MDOF System Showing Individual Modal Contributions 
(Ewins, 1985)

Figure 3.5 illustrates another common practice in creating Bode plots. Often, the 

frequency and magnitude values that must be included in a plot span quite a large range, so 

either one or both of the axes will be plotted using a logarithmic scale. In Figure 3.5 the 

frequency axis is plotted on a log scale, while the magnitude is plotted using a decibel scale.
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Figure 3.3 shows the Nyquist plot for a viscously-damped SDOF system. Points 

appearing on the curve correspond to individual frequencies (increasing in the clockwise 

direction). As evidenced in the figure, the progression of points traces out a near-circular 

arc, with the greatest frequency spacing occurring around the resonance frequency. This 

characteristic distortion aids in identification of the resonance frequency, since it makes 

those frequencies around the resonance much more distinct than the closely-spaced values 

that occur far from a resonance. It can be shown mathematically that only two cases 

theoretically produce an exact circle—a mobility plot for a viscously-damped system, and a 

receptance plot for a hysteretically-damped system (Ewins, 1985). The other cases 

(receptance or inertance plots for viscously-damped systems and mobility or inertance plots 

for hysteretically-damped systems) only trace approximately circular shapes for which the 

amount of distortion depends on the damping level.

Graphs o f the real and imaginary parts of the frequency response function corresponding 

to Figure 3.3 are presented in Figure 3.4. It is obvious from the figure that for inertance 

FRF’s, the real part changes sign when passing through a resonance, whereas the imaginary 

part experiences a peak at that location. Such sharp peaks and distinct sign changes seem 

quite useful for identifying resonances, however, since both positive and negative values 

must be displayed, this type o f graphical output does not lend itself well to logarithmic 

scaling. For this reason, and because o f the intricacy associated with multi-degree-of- 

freedom systems, the previous display options are much more widely utilized.
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3.1.3. Modal Parameter Estimation

A key element in the modal analysis process is the estimation of modal parameters from 

the measured frequency response functions. Several methods have been developed to 

accurately and efficiently perform this task, but the experience and best engineering 

judgment of the researcher are still called upon a great deal in this operation.

Peak-Picking Method. For very simple structures, such as a cantilevered beam, the 

resonance peaks are likely to be well-spaced and quite distinct from one another; this 

condition is referred to as having “lightly coupled” modes. For such structures, each mode 

acts virtually independently o f the others, and modal frequencies and damping can be 

determined from any measured FRF. Modal frequencies (damped natural frequencies) are 

determined simply by noting the frequency corresponding to the peaks o f the FRF curve.

The modal damping is somewhat more difficult to determine, which is not surprising, since 

damping is the most “elusive” of all the modal parameters. The amount o f damping is 

related to the width of FRF peaks—the lighter the damping, the narrower the peak. For very 

lightly-damped structures, the peak may be so narrow that an accurate measurement of the 

bandwidth is impossible, making it necessary to perform a “zoom” analysis in the vicinity of 

the peak. Once this operation has been performed, one can determine the frequency span 

required for the FRF to drop 3 dB in both directions from the peak value. This value, 

denoted as o, is the rate at which free vibrations of the system die out (at a particular 

damped natural frequency) (Rix et al., 1996). Figure 3.6 illustrates the concept o f the decay 

rate a. (An alternate criterion that is sometimes used for determining the damping value is 

to note the frequency bandwidth required for the FRF to drop to a level that is the magnitude
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at resonance divided by -Jl on either side of the resonance peak. The corresponding 

frequencies are known as the “half-power” points, and the modal damping constant, cr, is 

approximately equal to two times the identified bandwidth divided by the resonance 

frequency. (Ewins, 1985))

time t

Figure 3.6 Decay Rate, a , of Damped Oscillations (Dossing, 1988)

Mode shapes for the simple structure discussed above can be determined using a 

procedure known as “peak-picking.” It can be shown that at a modal frequency, the 

complex accelerance value becomes a purely imaginary number, according to the followin 

equation (Rix et al., 1996):
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„  ,  . i r ^ j K r ^ k )A(a>)+*I-----   CÔ  (3.9)
2 a

where

A(co)dr -  accelerance FRF magnitude at the r* damped natural frequency, codn and 

r0 =  the mass-normalized r* mode shape (remembering that mode shape values are 

relative displacement quantities, and are therefore often scaled for consistency).

This equation is closely related to Equation 3.3, but the damping now has been included in a 

more specific sense and the expression has been evaluated for one mode corresponding to 

one damped natural frequency. Equation 3.9 shows that the FRF magnitude is proportional 

to the modal displacement, and it is this fact that leads to the following procedure for 

determining mode shapes from peak-picking. First, an accelerometer is fixed to a 

predetermined “reference” location on the structure. Next the structure is excited at several 

locations, including the reference point FRF’s are measured for each excitation event then 

the imaginary parts are “picked” at the natural frequencies for each FRF, and the resulting 

shape formed from the value at each excitation point for a certain natural frequency is its 

associated mode shape. Figure 3.7 illustrates the process, with Point #2 shown as the 

reference degree of freedom (DOF). It should be noted that while this is the simplest of the 

modal parameter estimation techniques, it does have limited applicability; one significant 

limitation is that it can only be used on structures possessing proportional damping (i.e. the 

damping matrix is proportional to the mass and stiffness matrices) (Ewins, 1985).
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Figure 3.7 Illustration of the Peak-Picking Process (Dossing, 1988)

Unfortunately, not ail structures have FRF’s that are as simple and easily interpreted as 

those of the type described above so more sophisticated methods of modal parameter 

extraction are usually necessary to obtain accurate results. For structures whose FRF’s 

contain many closely-spaced (highly coupled) modes or significant noise contamination, or 

for analyses which demand a high degree of accuracy, the more rigorous parameter 

estimation techniques are normally recommended. The great majority, if not all, of these
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methods involve some type of curve-fitting algorithm that seeks to minimize the difference 

between the measured FRF and a mathematical, computer-generated FRF designed to match 

it. Dossing (1988) describes the curve-fitting technique is this manner, “Curve-fitting is 

where the mathematical theory and practical measurements meet. The theory provides us 

with a mathematical parametric model for the theoretical FRF of a structure, and our 

measurements give the real FRF. Curve-fitting is the analytical process to determine the 

mathematical parameters which give the closest possible fit to the measured data.”

SDOF curve-fitters are used for fairly simple structures whose modes are lightly- 

coupled, meaning'that each modal frequency behaves as if it were that for a SDOF structure, 

and the surrounding modes exert little, if any, influence over the mode of interest. The 

analyst must choose the frequency span over which each individual mode of each individual 

frequency response function has dominance. As Dossing states, “This is always a 

compromise between including as many data points as possible, to maximize the statistical 

estimation, and moving so far away from the resonance that other modes become dominant 

and the SDOF assumption becomes invalid.” (Dossing, 1988)

Circle-Fit Method. The most widely used SDOF curve-fitting algorithm is the circle-fit 

method, and it makes use of the Nyquist type plot described earlier in Section 3.1.2. First 

the analyst examines the measured FRF and chooses the frequency span surrounding the 

mode of interest. Next, any one o f many curve-fitting routines is used to produce a circle 

that is “closest” to the arc traced by the FRF in the Nyquist plot. Ewins points out that 

either o f two philosophies could be followed to calculate the deviation between the “model” 

circle and the FRF arc. In the first, the distance between the FRF points and the nearest
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point on the circle is minimized, and for the second, the distance between the FRF points 

and the location that they should occupy on the circle is minimized. Although the second 

philosophy is more accurate, the first is more easily implemented and is therefore more 

commonly employed (Ewins, 1985).

The next step in the circle-fit procedure is to obtain the natural frequency and damping 

estimates using the calculated circle. The natural frequency is determined by constructing 

radial lines from the center to several points surrounding the apparent peak frequency, and 

noting the angles they subtend with each other. The frequency corresponding to the 

maximum sweep rate around the circle is the natural frequency. An example of this process 

is pictured in Figure 3.8.

Figure 3.8 Estimation o f Natural Frequency Using Circle Fit Method (Ewins, 1985)
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From the properties o f  the modal circle, it can be shown that the damping o f the mode 

may be computed using Equation 3.10 below, whose quantities are illustrated graphically 

Figure 3.9:

cr = damping constant for the r* mode,

coa = frequency corresponding to the half-power point following the resonance 

frequency, cor,

©b = frequency corresponding to the half-power point preceding the resonance 

frequency,

0a = angle subtended between cob and (Or, and 

0b = angle subtended between a r and o a.

2(oil-ai l) (3.10)

where

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

img.

Real

Figure 3.9 Modal Circle Properties Used to Compute Damping for Circle-Fit Method 
(Ewins, 1985)

It is often helpful to calculate a number of damping estimates from different 

combinations of points around the resonance frequency, using Equation 3.10. Each estimate 

should give virtually the same value, so a calculation of the mean and standard deviation of 

the values should give an indication of whether the analysis is satisfactory. Ewins suggests 

that a deviation of less than 4-5% is highly acceptable, but if the deviation is near 20% or 

30%, a problem exists; likely candidates include poor experimental measurement techniques 

or interference from surrounding modes.

For many structural systems, a SDOF curve-fit is not appropriate or effective, and a more 

elaborate MDOF curve-fit algorithm must be employed. Examples of such structures are 

those that exhibit many closely-spaced modes, those that are so lightly damped that accurate 

estimates of the half-power bandwidth are unattainable, and those that are so heavily 

damped that resonance peaks are not clearly defined. Numerous MDOF curve-fitters are
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available for modal parameter estimation; some operate on data in the frequency domain, 

while others make use of time-domain data to extract the necessary quantities. Only one 

method, the frequency polyreference technique will be discussed here, since it was chosen 

for the pile length determination tests.

Frequency Polvreference Technique. It has already been mentioned that the first step in 

the modal analysis process is the collection of vibration response data in the form of 

frequency response functions, using equipment such as that described in Chapter n. The 

amount o f data acquired depends on the analyst’s judgment regarding the number of degrees 

o f freedom necessary to represent the true dynamics o f the structural system. Often, this 

decision is based upon the expected geometrical intricacy of the mode shapes— more DOF’s 

are required to adequately depict geometrically complex mode shapes than to model 

simpler, less complicated shapes. Once again, the researcher’s engineering judgment is 

called upon to weigh the time and cost of including a great number of data points to ensure 

the system dynamics are sufficiently represented against the certain, possibly dangerous, 

errors that will result if too few DOF’s are included.

Once that important decision has been made, it is usually the practice in modal analysis 

to choose a reference (or source) DOF where the excitation will be applied, and to monitor 

the response at each of the other response (or receiver) DOF’s. Depending on the 

equipment available, ail of the response data can be collected at once following a single 

reference excitation, or each response can be measured separately after successive 

excitations o f the reference DOF. Often, then, another reference DOF will be chosen from 

the set, and the response will again be measured at each of the response locations. The
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resulting FRF’s can be organized into a response model such as that depicted in Figure 3.1. 

Each reference-response combination leads to a single FRF, so it can be seen that a great 

deal o f data can be easily and quickly amassed when using the modal analysis test 

procedure.

As noted in the previous section, SDOF curve-fitters seek to fit data surrounding one 

peak in one FRF at a time. Obviously, it would take an enormous amount of time to process 

data for large structural systems, even if the SDOF curve-fit technique were applicable for 

the analysis. Many MDOF curve-fitters provide a fit for a complete FRF measurement in 

one step, and the frequency polyreference method, as it name implies, is able to produce a 

fit for many FRF’s from multiple references all at one time. This is advantageous not only 

because it reduces the analysis time, but also, since the method operates in the frequency 

domain, the residual effects o f modes outside the frequency range of interest are able to be 

included (Dossing, 1988). Also, since data from several references is fit simultaneously, the 

chances are lessened that some resonances may be missed due to application of the 

excitation at a node (point of zero displacement) o f a certain mode. For these reasons, the 

frequency polyreference approach was selected as the appropriate curve-fitting scheme for 

the pile length determination tests.

The basis of the method involves a curve-fit of the following analytical frequency 

response function expression:

(3.11)
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where

Ajkr = the residue term for mode r, which is proportional to the product o f modal

displacements at the multiple reference and receiver locations, i.e. Ajkr oc r*P , 

A’k = the complex conjugate of A]kr,

Xr = the complex conjugate of Xr ,

and the remaining terms are the same as those defined for Equations 3.2 and 3.3. This 

expression is essentially equivalent to Equation 3.3, only written in a different format, 

except that in this case, Hjk(co) represents a receptance F R F  rather than an accelerance F R F . 

The equation can, of course, be transformed into that for accelerance (remembering that 

acceleration is simply the second derivative of the displacement with respect to time), but it 

is presented here in the receptance format because that is the more general o f the two. As in 

the circle-fit method, the modal parameters are determined from the measured frequency 

response functions via a least squares curve-fit of the analytical expression above. Several 

mathematical tools exist that aid in the frequency polyreference parameter estimation 

process; details of these will be discussed in the next chapter.

3.2 Current Practice o f Modal Analysis for Civil Engineering Applications 

It was mentioned earlier in this chapter that until fairly recently, modal analysis was used 

predominately for vibration control studies of mechanical and aerospace engineering 

systems. Its use in the civil engineering community has spread, however, and it is now 

accepted as an extremely useful tool in the area of nondestructive testing of large structural
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systems. Condition and damage assessment o f existing structures is the pervading 

nondestructive application, due to the underlying principle that since a structure’s vibration 

behavior is governed by its mass, stiffness, damping properties, and boundary conditions, 

any changes in these properties over time should produce changes in the vibration 

characteristics. Several papers will be briefly summarized below to give the reader a sense 

o f the state of current modal analysis practice for condition assessment of civil engineering 

structures.

In a relatively early account of structural integrity evaluation, Wojnarowski et al. (1977) 

described a parametric study they performed to assess the structural state o f a large offshore 

light station tower. They began by creating an analytical model of the existing structure, 

then determined the variation in natural frequencies produced by changing one physical 

attribute at a time. Examples of the parameters they varied were soil foundation properties 

and tower leg heights, entrained water content of the concrete piles, amount of marine 

growth and corrosion, and inclusion of failed structural members. After the analytical study 

was completed, they gathered experimental vibration data from the actual tower, performed 

a modal analysis o f the results, and compared the corresponding measured and calculated 

natural frequencies. The results were used to “provid[e] a calibration basis for later 

measurements, on a regular or contingency basis, to ascertain whether the structure deviates 

from its original design characteristics.” Wojnarowski et al. noted that this scheme was 

intended to replace the “long, expensive and depth-limited system of diver inspection with 

vibration calculations and measurements that can predict the failure o f structural members at 

a fraction of the cost.”
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In a 1981 study o f what he called the “resonance frequency technique,” (but that is now 

called modal analysis) Alexander “evaluate[dj the feasibility o f using the resonance 

frequency technique with impact excitation for in situ evaluation o f the degree of 

deterioration, hence integrity, o f large concrete Civil Works structures.” He performed a 

series o f impact tests on large (3 ft. x 6 ft. x 10 ft.) concrete block lab specimens, after 

noticing that he could obtain reliable resonance frequency values from impact tests of small 

(3.5 in. x 4.5 in. x 16 in.) freezing-and-thawing specimens. He used the resonance results of 

the subsequent modal analysis to determine the dynamic modulus o f elasticity for the 

blocks, then conducted a similar analysis on eight in-place concrete piers of a dam across 

the St. Mary’s River. Alexander praised the powerful mathematical advantages afforded by 

the newly-developed digital signal analyzers and noted that the use of impact excitation was 

indeed a feasible, as well as economical, tool for performing tests to evaluate the vibrational 

properties o f massive concrete structures. He pointed out that measuring the modal 

characteristics o f a system at regular intervals, then noting any significant changes that 

occur between intervals and investigating their causes, is an effective means of monitoring a 

structure’s integrity throughout its lifetime. This concept o f continual structural health 

monitoring is echoed in numerous other papers.

Morgan and Oesterle (1985) presented a brief summary of the many terms and concepts 

involved in modal analysis, then went on to describe some of the information that could be 

inferred from modal test results as they pertain to the evaluation, inspection, and 

maintenance o f bridge structures. For instance, the authors noted that if two modes whose 

mode shapes differed only slightly were identified at relatively close frequencies, a local
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distressed area might be indicated. They stated that the distressed area should be evident 

from comparison o f the mode shapes. Additionally, the authors suggested that if two modes 

were found to have quite different frequencies, but very similar mode shapes, two active 

load mechanisms might be present. They stated that a soft foundation under one support 

would be evidenced by, “an unusual characteristic shape with only a single support or 

portion of a support participating excessively in the motion.” Morgan and Oesterie then 

described the field tests that were performed to assess the condition of two aging structures.

Richardson and Mannan (1993) detailed a procedure for identifying structural damage 

through a comparison of the modal analysis results of an “ideal” structure (recorded from a 

priori modal testing or from finite element modeling) with those of the corresponding 

damaged structure. They examined “measurement techniques, changes in the modal 

parameters caused by physical changes, fault location and quantification, and the use of a 

neural network to recognize changes in the modal parameters.” The results o f two 

experiments in which they induced damage and measured the resulting changes in modal 

parameters were also included.

Aktan et al. (1994) provided specific definitions for the condition assessment of a 

structure and for structural damage. They then used those definitions to establish objectives 

and recommend assessment techniques based on modal testing. After describing the results 

of two integrity evaluations of existing bridges, they concluded that “[i]t is possible to 

design, execute and post-process modal tests o f bridges by impact and/or force excitation, 

such that an accurate measure of their flexibility may be obtained with a fine spatial 

resolution.” The authors brought forth an important point, that due to the inevitable
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experimental errors inherent in the modal testing of large in-place structures, “the reliability 

associated with individual mode shapes or frequencies o f complex constructed facilities 

cannot exceed 90%.” They went on to say, however, that this reliability level is acceptable 

for damage evaluation, according to the definitions they provided.

In his discussion of the merits of modal testing for structural condition assessment, 

Salawu (1994) pointed out that unlike most conventional nondestructive testing methods, 

modal testing is a global procedure rather than a location-dependent one. Hence, “the 

measurement points can be chosen to suit the test situation.” He noted that though enough 

measurement points must be included to accurately represent the structure’s mode shapes, 

an advantage still exists in that damage can be detected at points not directly monitored by a 

response transducer. Salawu declared that another attractive feature of vibration testing is 

the fact that is does not require large force inputs, since dynamic amplification naturally 

occurs, ensuring a measurable response. He continued by detailing specific aspects o f a 

structure’s condition that can be indicated by modal testing results. The author made the 

following noteworthy point: “Despite the sensitivity of damping values to damage, it is 

probably the least appropriate damage identification parameter because o f the large scatter 

in reported experimentally-determined values. During procedures to extract modal 

parameters from measured dynamic response, estimates of damping values usually have the 

greatest degree of uncertainty.” Once again, it is evident that damping is the least well 

understood o f the modal properties.

Samman and Biswas, in Part I o f a two-part paper (Samman and Biswas, 1994a), 

outlined the theory behind the use o f waveform-recognition techniques for damage detection
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in bridge structures. After choosing the accelerance frequency response function as the 

appropriate bridge signature for condition monitoring, the authors defined, then detailed the 

three stages o f signature recognition. They defined the first stage as the preprocessing step, 

in which signatures are smoothed and noise is eliminated prior to application of signature- 

recognition tools. Stage two, the processing stage, involves the use of pattem-recognition 

tools to emphasize certain features in the signature. The third stage is the interpretation 

phase, in which heuristic or experience-based criteria are used to determine if two signatures 

are significantly different, based on the features highlighted in the second stage. In the 

remainder of Part I, the authors presented the details of the various methods that can be used 

to complete the three stages. In Part II of the paper, Samman and Biswas (1994b) described 

an application of the theory given in Part I, involving the identification o f the presence of 

simulated cracks in the girders of a laboratory bridge specimen and in an existing highway 

bridge.

Lenett et al. (1997) discussed many of the quality control issues that should be addressed 

when using modal analysis for integrity assessment of bridges. Most of the guidelines they 

mentioned are applicable to other modal testing applications as well. Two “behavioral 

assumptions which are fundamental requirements of modal analysis” were specified to be 

linearity and time-invariance. The authors explained that linearity is usually verified (or 

denied) using Maxwell-Betti’s principle of reciprocity. Typically, FRF’s from two 

reciprocal locations (e.g. H 2 3  and H 3 2 )  are overlaid; for linear systems, the plots will be 

nearly identical, while there will be noticeable differences between the two for systems 

containing nonlinearities. An alternate linearity check involves the comparison of FRF’s
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collected from the same source/receiver pair with different levels of excitation. Linear 

systems should reveal that increasing the excitation level increases the response level 

proportionally, so that the division of the response by the excitation (i.e. the FRF) should 

produce the same results for each force level.

Time-invariance, the second requirement enumerated by Lennett et al., is somewhat of a 

concern for bridge structures due to the fact that steel, concrete, and asphalt have 

temperature-dependent stiffnesses. After conducting tests at various times of the day for 

several days and comparing results, the authors concluded that, “testing at a particular time 

of day and the use of an optimum [test DOF] grid will permit the investigated bridge to be 

modelled as a time-invariant system.” The authors also addressed the various quality 

control measures that can be taken to ensure that linearity and time-invariance are satisfied, 

and that the data is not corrupted with bias-type errors. Measures they discussed included 

temperature control, proper data acquisition settings, maximization of signal-to-noise ratios, 

optimum hammer characteristics, and checks of raw time data and FRF’s to eliminate 

obviously flawed results.

There are numerous other publications that provide excellent descriptions of and 

commentary about condition assessment and damage detection of structural systems using 

modal analysis. Doebling et al. have compiled and given summaries of a comprehensive list 

of such works, and the interested reader is encouraged to consult their paper, available on 

the World Wide Web at http://esaea-www.esa.lanl.gov/damage_id/.
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3.3 Application o f Modal Analysis to the Pile Length Determination Problem 

Now that the basic concepts and some structural applications o f the modal analysis 

procedure have been explored, it can be seen that this process seemed particularly well 

suited to the unknown pile length problem. Figure 3.10 shows an idealization of a typical 

pile encased in a bent cap. For the present project, it was assumed that all o f the labeled 

parameters were either known or could be measured, except for L2, the length of pile 

embedded in the surrounding soil.

Since the ratio o f a pile’s length to its section depth is quite large, it was considered to be 

a long, slender member. From simple beam theory, one may recall that the natural
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frequencies o f undamped transverse vibrations are a function of a beam’s physical 

properties and end conditions, according to the following equation:

where

(Or = the r* mode natural frequency, 

k = dimensionless constant based on end restraint conditions,

L = beam length = L1+L2,

E = modulus o f elasticity,

I = moment o f inertia, and 

y -  mass per unit length o f the beam.

Examination o f the above equation revealed two points related to the present study. 

The first was quite obvious, that as the beam length is varied (in this case due to a variation 

in length of the embedded portion, L2), the natural frequency values change accordingly. 

Secondly, for a given end condition, the length term should dominate the frequency 

computation since it is squared while the remaining terms are raised to the XA power. 

Although Equation 3.12 is based on simple beam theory, expressions for more complex 

beams are similar in form. In all cases, the natural frequencies are functions of the 

quantities pictured in Figure 3.10, all o f which are known except one. It was believed, then,

(3.12)
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that if the frequency response to a known flexural excitation could be obtained (through 

modal analysis), the unknown length could be “backcalculated” from Equation 3.12.

It was clear from the beginning of the project that the two primary complexities present 

in the pile length determination problem were the effect that the embedment soil had on the 

modal parameters, and the proper determination of the true boundary conditions. Chapter 

IV contains a description o f the testing procedure used to quantify these effects, and the 

corresponding analytical models are presented in Chapter V.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER IV

MODAL ANALYSIS TEST PROCEDURE

4.1 Test Method

The small-scale pile facility constructed for the present study was described in detail and 

pictured in Chapter n. In the following paragraphs, the modal analysis testing procedure 

used to characterize the small-scale piles’ modal properties is summarized, and the test 

results are discussed. As stated previously, the primary objective o f the testing series was to 

quantify the variation in modal parameters determined for piles with different embedment 

lengths. Once the modal parameters for each pile were identified, they would be used to 

backcalculate the length of the embedded portion, remembering that all other properties 

were known or were easily measured.

The first pile group studied consisted o f five steel S3x5.7 piles, designated as A through 

E, having identical exposed lengths and different embedded lengths, which ranged from one 

foot for Pile A to five feet for Pile E. Table 4.1 gives details o f the Group I pile 

configuration, and Figure 4.1 illustrates their placement within the test facility. Figure 4.2 

shows the dimensions for a typical S3x5.7 steel section, while the orientation o f the test 

piles with respect to the supporting W10x45 section is presented in Figure 4.3.
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Table 4.1 Details of Group I Test Piles

Pile Total Length Exposed Length Embedded Length
A 6 ft 5 f t 1 ft
B 7 ft 5 f t 2 ft.
C 8 f t 5 f t 3 ft.
D 9 f t 5 f t 4 f t
E 1 0 ft 5 ft. 5 ft.

Angled S3x5.7. 

3 in. Plate 

W10x45

C9x13.4

Concrete Rim

 S a n d  Fill

Pile: E D C B A

Figure 4.1 Configuration of Pile Group I 
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2.330 in.

0.260 in.

0.170 in.

0.270 in.

0.140 in.

Figure 4.2 Dimensions for S3x5.7 Section

W10x45

S3x5.7

v u

Figure 4.3 Orientation o f S3x5.7 Test Specimen with Respect to Supporting W 10x45
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4.1.1 Test Grid

Nonembedded Tests. To obtain data for the simplest available boundary conditions, Pile 

A was tested before the sand fill was placed in the pit. Without the embedment sand 

present, each pile was essentially a cantilevered beam, and the intent was to collect modal 

data that could be compared to that generated from a closed-form solution, as well as a finite 

element analysis for a fixed-free beam.

The test grid for Pile A in the nonembedded configuration is shown in Figure 4.4. The 

numbered positions are locations at which the pile was either impacted or at which the 

accelerometer was attached to record the wave motion resulting from an impact; the test 

procedure will be described in detail in the next section.

Embedded Tests. After the tests for Pile A in the nonembedded configuration were 

completed, the sand fill was placed in the pit in the manner described in Chapter II. Since 

each of the piles A through E then had an exposed length of 5 ft., the test grid for each was 

identical, and is pictured in Figure 4.5.

4.1.2 Test Procedure

For each test, an accelerometer was placed at one o f the numbered positions, and the 

impact hammer described in Chapter II was used to strike the pile at that or another of the 

designated locations. The resulting force and acceleration data were collected, converted 

from analog to digital format, transformed into the frequency domain, and used to compute a 

frequency response function, which was then displayed on the signal analyzer’s screen. The 

coherence function (described in Chapter IQ) was displayed concurrently with the FRF, so
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W10x45

Dynamic Signal Analyzer

Accelerometer

Hammer

9
8

7

6
5

4

3

2

1

2 in. 
6 in.

8 in. 

8 in. 

8 in. 

8 in. 

8 in. 

8 in. 

8 in. 

8 in.

Figure 4.4 Test Grid for Pile A in Nonembedded Configuration
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W10x45

6 in.
Dynamic Signal Analyzer

6 in.

6 in.

6 in.

6 in.

6 in.

Accelerometer
6 in.

6 in.
Hammer

6 in.

6 in.

Figure 4.5 Test Grid for Piles A-E in Embedded Configuration
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that aberrant signals could be identified and their cause investigated. If all of the displays 

were found to be acceptable, the test was repeated until five FRF’s had been recorded and 

averaged for that particular source/receiver location combination. Five averages were used 

to reduce the bias error associated with the frequency response computation, as discussed in 

Chapter m. This was in accordance with the international standard (ISO 7626-5:1994) that 

deals with tests o f this type, which states that “[i]n a low-noise environment, averaging three 

to five impacts is usually sufficient to verify data quality.”

The hammer was then moved to a different position, and the entire process was repeated 

for the new source/receiver combination. In order to perform the tests in an organized 

manner, the first impact was applied at the topmost position (Position 9 of Figures 4.4 and 

4.5), then the impact position was moved systematically down the pile to successively 

lower-numbered locations. After FRF’s had been collected for each of the required impact 

positions, the accelerometer was relocated, and the impact process repeated. Due to the 

principle of dynamic reciprocity, mentioned briefly in Chapter m , only the upper (or lower) 

triangular portion of the complete FRF matrix was required, but several additional 

measurements were performed to verify the linearity of the system, as recommended in the 

international standard quoted in the preceding paragraph. Frequency response functions 

were designated using the letter o f the specific pile being examined, along with the numbers 

of the source and receiver locations for a particular test. For instance, C58 refers to the FRF 

measured on Pile C, with the accelerometer located at Position 5, and the impact applied at 

Position 8.
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Measurements o f the type described above were performed along both the X and Y axes 

of the S3x5.7 sections, since the different stiffnesses exhibited along each axis resulted in 

unique responses to dynamic impacts for each direction. Care was taken when testing along 

the Y axis to impact as near to the center o f the flange as possible (the impact position was 

marked on the flange), so that the impulse would travel directly through the web (which was 

only 0.17 inches thick) to the accelerometer on the other side.

4.1.3 Data Windowing

Since the time duration of an impact is usually much shorter than the total time sample 

length, the energy of the noise present in the portion of the signal following the impact may 

be significant compared to that o f the impact itself, even for traces with high signal-to-noise 

ratios (Halvorsen and Brown, 1977). Since the impact event is the only real area of interest, 

a mathematical “window” has been developed that greatly reduces the noise in the 

remaining segment o f the force signal. The force window is a function that begins with a 

flat portion of amplitude 1.0 (corresponding to the time that the impact is occurring), 

followed by a cosine taper leading to another flat section o f amplitude zero that lasts for the 

duration of the sample length. Elimination o f the noisy segment of the signal significantly 

improves the quality of frequency response functions that utilize impact excitation 

(Halvorsen and Brown, 1977). Figure 4.6 shows a typical impact force pulse and the 

associated force window.
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r«o x 29op S«c lOOm

Force Pulse

Ampl 

1.0

0.0

Figure 4.6 Typical Impact Force Pulse and Force Window (HP App. Note 243-3)

Undesirable noise may also comprise a large part of the response signal if the test 

structure is heavily damped and the signal decays quickly relative to the total time sampled. 

For lightly damped structures, though, the response signal may not have substantially 

decayed by the end of the time record. If this is the case, the signal will be abruptly 

truncated at the end of the sample time, ieading to the phenomenon known as “leakage,” in 

which the resonance peaks in the signal’s frequency spectrum are broader than those
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without truncation, have lower amplitude values, and are accompanied by smaller secondary 

lobes on either side of the peak (Dossing, 1988). Leakage is a result of the nature o f Fourier 

transformation, since it is only ideally suited to perfectly periodic signals. Figure 4.7 shows 

the relation between truncated and nontruncated displacement time histories, x(t), and their

corresponding Fourier transforms, denoted as ^(rw)], where the scripted F's above the 

curved arrows represent Fourier transformation into the frequency domain.

Freq («)True Data

t

Freq («)
Truncated Data

Figure 4.7 Illustration o f Leakage Phenomenon (Dossing, 1988)
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An exponential window can deal effectively with both of the situations discussed above. 

The window consists o f an exponentially decaying function o f the form given in Equation

4.1 below.

w(t) = e r (4.1)

where

w(t) = window function (function o f time, t), and

t  = selected time delay constant.

As is evident from Equation 4.1, the exponential window has an initial value of 1.0 at 

time t = 0, after which it decays at a rate dependent on the value chosen for x (which 

corresponds to the time it takes to decrease in amplitude by an amount 1/e). Various 

guidelines exist for choosing the proper time constant; one recommendation is to select it so 

that the amplitude o f the response signal will decrease to 1-5% of its initial value by the end 

of the time record (Halvorsen and Brown, 1977; ISO 7626-5:1994), while another is to set 

the value o f x to be V* o f the total time record (Hewlett-Packard, 1986). In any case, 

multiplication of the exponential window by the time-domain response record serves to 

significantly decrease errors due to excessive noise for highly damped structures, and due to 

truncation errors for lightly damped structures.

Figure 4.8 illustrates the effect an exponential window has on a test specimen’s 

displacement response to an impact Once again, the scripted F’s above the arrows refer to
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Fourier transformation into the frequency domain, and the autospectrums of the time signal 

before and after windowing are computed and denoted as Gxx(co). The figure shows that 

although the measured resonance peak in the windowed autospectrum is slightly broader 

and lower in amplitude than the true peak, the resulting trace is much cleaner than that for 

the unwindowed data. Halvorsen and Brown (1977) stated the following concerning the 

exponential window:

...the exponential window does change the resulting measured frequency response 
function; but its only effect is to increase the apparent damping in the resonances. It 
does not change the resonance frequencies and, because the effect of the 
exponential window is the same on all frequency response measurements, it will not 
alter the measured mode shapes if applied to all measured frequency response 
functions. In addition to reducing noise and truncation errors, the exponential 
window will also reduce errors which often occur when testing lightly damped 
systems in which the damping varies with the measurement position on the 
structure.

Force and exponential windows were applied to all data collected for the modal analysis 

work described in this chapter.

4.2 Modal Parameter Estimation 

As discussed in Chapter m , the frequency polyreference modal parameter estimation 

technique was employed to extract the modal characteristics of Piles A through E. It was 

also mentioned that several tools were available to facilitate the estimation process; those 

used in the present study will be described in the following paragraphs.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Window for Response from impact
x,(t) Response Problems:

True
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s^f^Leakage Error)
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m i
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Measured
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Figure 4.8 Effect o f Applying Exponential Window to Response Signal (Dossing, 1988)

4.2.1 Stability Diagram

Figure 4.9 shows a set o f typical driving point (impact applied at the same location as the 

accelerometer) frequency response functions for Pile A in the nonembedded configuration. 

The data shown here has been analytically generated; it is used for illustration purposes
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because it is “ideal” data and its trends are somewhat more easily identifiable than those of 

the experimental data are.

Driving Point PRF's for Pile A in Nonembedded Configuration 
Analytically Generated Data for Tests Along X Axis
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Figure 4.9 Analytically Generated Driving Point FRF’s for Pile A (Nonembedded)

From the figure, one can observe that it would be a relatively simple task to estimate by 

eye the natural frequencies of the pile (frequencies where peaks exist). In fact, the
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nonembedded configuration is essentially that of a cantilevered beam of the type described

in Chapter II, whose modal parameters could indeed be identified without any type of curve-

fitting scheme. However, experimental data is rarely as well behaved as analytical data, and

natural frequencies are not always readily identifiable from plots of experimental FRF’s.

Various tools exist in commercially available modal parameter identification packages

(such as the frequency polyreference scheme found in I-DEAS Modal™) that allow for a

more objective identification of the natural frequencies. One such tool that is commonly

used to “pinpoint” the natural frequencies, and specifically, to establish the number of

resonances that exist in the frequency range of interest, is the stability diagram. The

stability diagram corresponding to the nonembedded Pile A data is presented in Figure 4.10.

As is evident from the figure, the diagram is a plot of the number of poles (natural

frequencies), or model order, versus frequency, and various symbols are employed to

indicate the changing stability of the poles as the curve-fit model order increases. Allemang

et al. (1994) described the stability diagram as follows:

The stability diagram...involves tracking the estimates of frequency, damping, and 
possibly modal participation factor as a function of model order. As the model 
order is increased, more and more modal frequencies are estimated but, hopefully, 
the estimates of the physical modal parameters will stabilize as the correct model 
order is found. For modes that are very active in the measured data, the modal 
parameters will stabilize at a very low model order. For modes that were poorly 
excited in the measured data, the modal parameters may not stabilize until a very 
high model order is chosen. Nevertheless, the nonphysical (computational) modes 
will not stabilize during this process and can be sorted out o f the modal parameter 
data set...easily.

It is often helpful to overlay a plot of one of the measured frequency response functions 

onto the stability diagram to further aid in selection of the resonance locations. In Figure 

4.10, the primary curve o f the multivariate mode indicator function (MvMIF) has been
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overlaid onto the stability diagram, and the selected natural frequencies have been circled 

for emphasis. Simply put, the MvMIF is a mathematical manipulation of the frequency 

response data obtained from multiple references; it is formed to identify normal modes 

(those for which the response is purely imaginary and lags the excitation force by exactly 90 

degrees), and its graphical results appear as a series of sharp inverted peaks at resonance 

locations (Dossing, 1995).

IN ««• • •• ••• It***•< • • • I

□ .....
□.......

OM**«M*? 

*•*« *•!•

»*•< • I «
Nt* »*!• I • I
*««i *•! I • I
• l a  f t r <  •  I

Figure 4.10 Stability Diagram for Nonembedded Pile A Data
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4.2.2 Residue Comparison

Once the resonance locations have been determined, and the model order has been 

verified using the stability diagram, the natural frequencies and damping factors (which 

represent the percentage of critical damping for the pile-soil structural system) of the 

measured FRF’s are calculated for each mode using the frequency polyreference curve- 

fitting scheme described previously. To make certain, then, that the curve-fit numerical 

estimation of the FRF's is in good accord with the measured data, residues are computed for 

each of the test specimen locations. In essence, this means that frequency response 

amplitude values are calculated and compared to those that were measured at each of the 

predetermined points. Figure 4.11 shows the residues that were determined for Position 4 of 

Pile A. In the figure, the plots (from top to bottom) show the accelerance FRF’s at Position 

4 due to impact at Positions 3 (top plot), 4 (second plot), and so on, through Position 7. The 

solid lines represent the Pile A data, while the broken lines represent the numerical 

estimates calculated by the software. It is evident from the figure that a good fit has been 

achieved (in fact, it is somewhat difficult to distinguish the solid lines from the broken lines, 

since the data lie so close together), and confidence can be placed in the modal parameter 

estimates, as would be expected for a simple case such as the one described here.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

100*400 <00200

10.00
4002 0 0

alOOOllI
1000.00

2 0 . 0 0
1 0 0 02 0 0

400 <00
Frequency, Hz

10 0

2000119
1 0 0 0 . 0 0

2 0 . 0 0

Figure 4.11 Residues for Pile A Data in the Nonembedded Configuration

Each of the procedures described above was applied to the data collected for the piles in 

Group I, and the measured FRF’s and parameter estimation results will be presented in the 

next section. All of the estimations for the measured data were performed using the I-DEAS 

Modal™ software, produced by the Structural Dynamics Research Corporation (SDRC).
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4.3 Experimental Test Results

4.3.1 Results for Tests Along the X Axis

For tests conducted along the X coordinate axis (as designated in Figure 4.2), the 

accelerometer was attached to the web of the S3x5.7 test specimen so that its axis was 

perpendicular to the length of the pile, as pictured in Figure 4.12. The impacts were applied 

with the same orientation, but were applied to the opposite side of the web for testing 

convenience. Plots validating the linearity of the Group I pile systems for tests along their 

X axes are presented in Figures 4.13 through 4.18. In the figures, frequency response 

functions measured for various reciprocal positions are overlaid; the close agreement 

between the two FRF’s shown for every pile indicates that each of the pile-soil systems was 

indeed linear in nature.

It should be noted that all measurements for Pile A in the nonembedded configuration 

were performed for a frequency span of 0-1000 Hz. Preliminary numerical analyses (of the 

type that will be described in the next chapter) indicated that if significant differences 

existed in the frequency responses of the embedded piles, they would be exhibited at 

relatively high frequencies. Therefore, a frequency span of 0-5000 Hz was measured for the 

embedded piles.
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Figure 4.12 Illustration o f  Accelerometer Orientation for Tests Along the X Axis
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Tested Along the X Axis
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Figure 4.14 Linearity Validation Plot for Pile A in the Embedded Configuration, 
Tested Along the X Axis
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Figure 4.15 Linearity Validation Plot for Pile B, Tested Along the X Axis
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Figure 4.17 Linearity Validation Plot for Pile D, Tested Along the X Axis
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Figure 4.18 Linearity Validation Plot for Pile E, Tested Along the X Axis

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Driving point frequency response functions are those for which the impact force and 

acceleration are measured at the same location, while cross-point FRF’s are those for which 

the two are measured at different locations. To illustrate the general shapes and trends of 

the FRF’s for each test pile, the nine driving point response functions for Piles A through E 

are overlaid and presented in Figures 4.19 through 4.24. It is important to note that for the 

modal parameter estimation process, driving point and cross-point measurements were 

included, but for clarity of illustration, only the driving point FRF’s are presented in the 

following figures. Figures containing the remaining FRF’s for Pile C (as a representative 

case) are included as Appendix A.

O r i v i n g  P o i n t  f r s q u s n c y  J l a a p o n s *  f u n c t i o n s  A l t  t o  A99 
f i l s  a . M o n a s b a d d t d  C o n f i g u r a t i o n .  Al o n g  X A x i s

S•U

o*o2

"— 1—y ^ ri— ri—1---------1— 1— 1— .

t f a m r i E a

P r s q u s n c y .  Hr

Figure 4.19 Driving Point Frequency Response Functions for Pile A, Nonembedded 
Configuration, Tested Along the X Axis
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Figure 4.20 Driving Point Frequency Response Functions for Pile A, Embedded 
Configuration, Tested Along the X Axis
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Figure 4.21 Driving Point Frequency Response Functions for Pile B, Tested Along X Axis
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Figure 4.22 Driving Point Frequency Response Functions for Pile C, Tested Along X Axis
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Figure 4.23 Driving Point Frequency Response Functions for Pile D, Tested Along X Axis
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Figure 4.24 Driving Point Frequency Response Functions for Pile E, Tested Along X Axis
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4.3.2 Results for Tests Alone the Y Axis

For tests conducted along the Y coordinate axis (as designated in Figure 4.2), the 

accelerometer was attached to the outside flange of the S3x5.7 test specimen so that its axis 

was perpendicular to the length o f the pile, as illustrated in Figure 4.25. The impacts were 

applied with the same orientation, but were applied to the opposite flange for testing 

convenience. Plots validating the linearity o f the Group I pile systems for tests along their 

Y axes are presented in Figures 4.26 through 4.29. Once again, the close agreement between 

the two overlaid FRF’s for each pile shown indicates the linear nature of the soil-pile 

systems. It should be noted that linearity validation tests along the Y axis were not 

performed for Pile A, but it is reasonable to assume that the results would be similar to those 

for Piles B through E.

W10x45

S3x5.7

Accelerometer—► O

Figure 4.25 Illustration of Accelerometer Orientation for Tests Along the Y Axis
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Figure 4.26 Linearity Validation Plot for Pile B, Tested Along the Y Axis

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A
cc

el
er

on
ce

 
M

og
ni

tu
de

. 
dB 

P
ho

se

L i n e a r i t y  Che e k  f o r  M l *  C A l o n g  Y A r i a  
f r e q u e n c y  k e a p o n a e  f u n e t i o n a  C4SY a n d  C54Y

j  Uxx xx160
00

0 0

0 0

0 0

C4SY

CS4Y

0 0
0 1000 2000 1000 4000  5000

f r e q u e n c y .  Nt

Figure 4.27 Linearity Validation Plot for Pile C, Tested Along the Y Axis
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Figure 4.28 Linearity Validation Plot for Pile D, Tested Along the Y Axis
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Figure 4.29 Linearity Validation Plot for Pile E, Tested Along the Y Axis
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Driving point measurements conducted along the Y axis for Piles A through E, 

respectively, are presented in Figures 4.30 through 4.34. Once again, it should be noted that 

driving point and cross-point measurements were included in the modal parameter 

estimation process, but for clarity of illustration, only driving point FRF’s are presented in 

the following figures.
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Figure 4.30 Driving Point Frequency Response Functions for Pile A, Embedded 
Configuration, Tested Along the Y Axis
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Figure 4.31 Driving Point Frequency Response Functions for Pile B, Tested Along Y Axis
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Figure 4.32 Driving Point Frequency Response Functions for Pile C, Tested Along Y Axis
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Figure 4.33 Driving Point Frequency Response Functions for Pile D, Tested Along Y Axis
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Figure 4.34 Driving Point Frequency Response Functions for Pile E, Tested Along Y Axis
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4.4 Modal Parameter Estimation Results

4.4.1 Examples of Estimation Tools

A sampling of the many tools available to aid in the modal parameter estimation curve- 

fitting process were discussed in Section 4.2, including the stability diagram, the 

multivariate mode indicator function, and the comparison of residues calculated from the 

estimation results. Examples of the stability diagram and of the residue comparison, 

computed for Pile C, are presented in Figures 4.35 and 4.36 to illustrate their appearance for 

experimental data. One can easily see that the proper selection of resonance frequency 

locations and model order requires much greater consideration and judgement by the analyst 

for experimental data than for the analytically generated data of Figures 4.9 through 4.11.
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4.35 Stability Diagram for Pile C FRF Data, Tested Along X Axis, Selected Resonance 
Locations Circled
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In Figure 4.35, the driving point FRF’s for Pile C have been overlaid onto the stability 

diagram to aid in the proper selection of natural frequency locations, and the resonances that 

were chosen have been circled for emphasis. The stability diagram shown only includes 

frequencies up to 2000 Hz since experimental data above that frequency level was not 

included in the parameter estimation routine. The decision to decrease the frequency range 

of interest from the 5000 Hz that was measured to 2000 Hz was made after examination of 

the experimental FRF’s revealed that the data quality appeared to decrease significantly in 

the range from 3000 to 5000 Hz. The data peaks in this region were quite indistinct, and 

appeared to “drift” upward with increasing frequency. Examples of this trend can be seen in 

Figures 4.20 through 4.24. Ewins (1985) makes the following comments regarding data of 

this type:

A...check can be made towards the upper end of the frequency range where it is 
sometimes found, especially on point mobility [i.e. driving point] measurements, that 
the curve becomes asymptotic to a mass line or, more usually, to a stiffness line.
Such a tendency can result in considerable difficulties for the modal analysis process 
and reflects a situation where the excitation is being applied at a point of very high 
mass or flexibility. Although not incorrect, the data thus obtained will often prove 
difficult to analyse (sic) because the various modal parameters to be extracted are 
overwhelmed by the dominant local effects. Such a situation suggests the use of a 
different excitation point.

Since this trend was present in the FRF’s recorded at all the excitation points (and therefore

a different excitation point did not eliminate the effect), it was decided that only the data in

the lower 2000 Hz could be successfully subjected to the modal parameter estimation

process.

Although there is only scant evidence of it in the figure, another tool known as the Modal 

Confidence Factor (MCF) was considered in determining the appropriate number of poles
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(curve-fit model order) to select at each resonance location. The MCF value is an indication 

of the likelihood that a mode identified by the curve-fit routine at a certain frequency and 

pole number is a physical, rather than computational, mode. (The I-DEAS™ Test Modal 

Analysis User's Guide describes a computational mode as “one that corresponds to no 

physical mode of vibration, but which is generated by the modal extraction algorithm to 

account for unwanted effects [including] noise, filter characteristics, leakage...and 

nonlinearities.”) The MCF “exploits redundant phase relationships that are satisfied by 

physical modes, but which are meaningless for computational modes” (I-DEAS™, 1995) to 

produce a value between 1.0 and zero; an MCF value near 1.0 indicates that the mode is 

most likely physical, whereas a value close to zero suggests a computational mode.

Although Figure 4.35 shows that the minimum MCF considered by the curve-fitter was 0.2, 

the minimum MCF for the resonances selected was much higher-usually modes were not 

selected that had MCF’s below 0.85, and most had values of 0.95 or higher.

The residues shown in Figure 4.36 are presented in the same format as those of Figure 

4.11. The plots (from top to bottom) show the accelerance FRF’s at Position 7 due to 

impact at Positions 1 (top plot), 2 (second plot), and so on, through Position 9. The solid 

lines represent the measured Pile C data, while the broken lines represent the residues 

generated numerically from the modal parameter estimation results. One can see from the 

figure that a relatively good fit was achieved for frequencies from zero to 2000 Hz, which is 

the frequency range included in the estimation process. This fit was deemed sufficient to 

consider that the modal parameters identified (which will be presented for all Group I piles
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in the next section) were indeed those of the pile system under consideration (Pile C for the 

figures shown).

Plots of the type shown in the two previous figures were produced for each of the Group 

I piles, and modal parameters were identified for each. The results of the parameter 

estimation process will be presented in the next section, and the conclusions drawn from 

them will be discussed in Chapter VII.

4.4.2 Results for Tests Along the X Axis

The natural frequency and damping factor estimates determined using the frequency 

polyreference modal parameter estimation technique are presented in Tables 4.2 to 4.7 for 

Piles A through E, respectively, for tests along the X Axis. The results are presented 

graphically in Figures 4.37 and 4.38 as plots of natural frequency and damping versus mode 

number. Mode shapes were also generated from the estimated parameters, and a 

comparison of the shapes for each pile revealed that every pile did not exhibit ail of the 

modes present in every other pile. Thus, the natural frequency and damping values have 

been separated in the tables and figures such that values corresponding to like modes are 

given the same mode number. For example, the ninth through twelfth mode shapes 

calculated for Pile C are presented in Figure 4.39, and those calculated for the eighth 

through eleventh modes of Pile E are given in Figure 4.40. It is clear from the figures that 

the mode shapes shown correspond to like modes, even though the mode numbers are 

different. These modes, then, were assigned like mode numbers in Tables 4.5 and 4.7. This 

"matching” of modes for each pile accounts for the gaps that are present in Tables 4.2 to 4.7
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and in Figures 4.37 and 4.38. Additionally, the modes identified for Pile A in the 

nonembedded configuration do not correspond with those identified for the embedded piles, 

because of the dissimilar boundary conditions encountered at the “bottom” end of the pile, 

but its values are included for completeness and comparison purposes.

Table 4.2 Pile A Modal Parameter Estimation Results

Pile A, Nonembedded Configuration 
Experimental Data. Tests Alona X Axis

Mode Natural
Number Frequency, Hz Damping, %

1 9.1 19.1
2 63.3 0.3
3 154.5 0.1
4 181.6 0.1
5 261.3 0.1
6 335.7 0.2
7 355.5 0.1
8 485.6 0.1
9 563.5 0.1
10 692.7 0.2
11 817.0 0.3
12 950.7 0.2
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Table 4.3 Pile A Modal Parameter Estimation Results

Pile A, Embedded Configuration 
Experimental Data. Tests Along X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 68.5 9.9
2 183.9 4.5
3 255.1 3.1
4 375.3 4.3
5 488.0 2.9
6 586.0 4.6
7 710.8 3.3
8 837.6 5.0
9
10 1134.1 0.5
11 1216.1 0.8
12 1337.9 1.2
13 1491.0 1.1
14 1635.2 1.2
15 1714.9 1.2
16 1909.2 1.9
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Table 4.4 Pile B Modal Parameter Estimation Results

Experimental Data. Tests Alonq X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 70.5 9.7
2 187.0 5.7
3 260.0 3.7
4 379.9 6.0
5
6 587.4 6.4
7
6
9
10 1131.7 0.6
11 1215.3 0.8
12 1338.1 1.4
13 1493.8 1.4
14 1629.6 2.4
15 1707.4 1.6
16
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Table 4.5 Pile C Modal Parameter Estimation Results

Experimental Data. Tests Along X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 72.8 8.3
2 195.4 4.6
3 266.8 3.5
4 401.6 5.4
5 507.2 3.1
6 639.4 5.4
7 748.6 5.2
8
9 917.6 6.0
10 1149.6 0.5
11 1232.4 0.7
12 1358.8 0.9
13 1512.2 1.2
14 1629.3 1.3
15 1737.6 1.6
16 1952.9 2.1
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Table 4.6 Pile D Modal Parameter Estimation Results

Experimental Data. Tests Alonq X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 69.4 9.4
2 186.2 5.6
3 258.6 4.2
4 375.9 6.0
5
6 589.7 5.3
7 701.9 6.9
8
9
10 1134.9 0.6
11 1217.0 1.0
12 1337.4 1.3
13 1495.3 1.5
14 1652.5 1.3
15
16 1922.7 4.4
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Table 4.7 Pile E Modal Parameter Estimation Results

Experimental Data. Tests Alonq X Axis
Mode Natural

Number Frequency. Hz Damping, %
1 70.6 9.0
2 191.4 4.3
3 264.3 3.2
4 388.8 4.7
5 495.2 2.4
6 605.8 6.4
7
8 875.7 5.7
9
10 1147.3 0.6
11 1228.8 0.7
12 1351.0 1.0
13 1506.3 1.2
14 1656.1 1.3
15 1732.1 1.4
16 1926.8 2.3
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Damping vs. Mode Number
Group I Experimental Data, Tested Along X Axis
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Figure 4.40 Eighth Through Eleventh Mode Shapes Calculated from Pile E Modal 
Parameter Estimates
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4.4.3 Results for Tests Along the Y Axis

The natural frequency and damping factor estimates determined using the frequency 

polyreference modal parameter estimation technique are presented in Tables 4.8 to 4.12 for 

Piles A through E, respectively, for tests along the Y Axis. The results are presented 

graphically in Figures 4.41 and 4.42 as plots of natural frequency and damping versus mode 

number, in a manner similar to that described in Section 4.4.2 above, mode shapes 

calculated from the parameter estimates were examined and compared, revealing that every 

pile did not exhibit all of the modes present in every other pile. Once again, then, the 

natural frequency and associated damping values have been separated in the tables and 

figures so that those values corresponding to like modes are given the same mode number. 

Tests were not performed along the Y axis for Pile A in the nonembedded configuration.

Table 4.8 Pile A Modal Parameter Estimation Results

Pile A, Embedded Configuration
Experimental Data. Tests Alonq Y Axis
Mode Natural

Number Frequency, Hz Damping, %
1 132.9 11.4
2 376.0 4.2
3 708.1 2.7
4 987.5 2.2
5 1132.9 0.7
6 1214.1 1.1
7 1336.9 1.5
8
9 1620.4 2.3
10
11 1946.7 1.8
12 1998.8 0.7
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Table 4.9 Pile B Modal Parameter Estimation Results

Experimental Data. Tests Alonq Y Axis
Mode Natural

Number Frequency, Hz Damping. %
1 146.8 7.3
2 396.0 8.8
3 752.3 12.9
4
5 1131.1 0.6
6 1217.4 0.8
7 1344.5 1.0
8 1505.2 1.2
9
10 1716.8 1.4
11
12

Table 4.10 Pile C Modal Parameter Estimation Results

Experimental Data. Tests Alonq Y Axis
Mode Natural

Number Frequency, Hz Damping. %
1 145.8 7.7
2 377.0 8.8
3
4
5 1153.5 2.5
6 1231.9 1.0
7 1308.4 6.8
8
9
10 1773.6 1.2
11
12
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Table 4.11 Pile D Modal Parameter Estimation Results

Experimental Data. Tests Along V Axis
Mode Natural

Number Frequency, Hz Damping, %
1 150.5 11.5
2 403.0 4.6
3 754.4 6.8
4
5 1132.7 0.5
6 1215.0 1.0
7
8
9
10
11
12 1996.6 0.8

Table 4.12 Pile E Modal Parameter Estimation Results

Experimental Data. Tests Along Y Axis
Mode Natural

Number Frequency, Hz Damping. %
1 144.7 9.1
2 391.7 6.4
3 719.1 3.7
4
5 1145.2 0.8
6 1226.3 0.8
7 1354.5 1.0
8
9
10 1738.6 1.4
11 1949.0 2.2
12
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4.5 Discussion of Experimental Results 

It is apparent from Figures 4.37 and 4.41 that the natural frequencies of the Group I 

model piles are quite similar, and in fact, are virtually indistinguishable from each other in 

the frequency range considered valid for the modal parameter estimation process. The 

largest percentage difference from the Pile A results is for Pile C, along the X Axis, with a 

difference of 9.1%. For most of the frequencies, though, for tests along both axes, the 

difference from the corresponding Pile A frequencies is less than 3%.

Differences in damping values between the piles, though their magnitude is somewhat 

greater than that for the natural frequencies, do not follow a distinctive pattern, it can be 

seen in Figure 4.38 that damping quantities along the X axis for each of the embedded piles 

follow similar trends as the mode number increases. However, there is no clear pattern 

established for one pile to have the highest damping value at each mode, then another to 

have the next highest value for each mode, etc. The quantities presented in Figure 4.42 for 

damping values along the Y axis exhibit even less distinguishable trends, although the 

values do seem to generally decrease in magnitude as the mode number increases. This lack 

of distinction based on the damping values is not altogether surprising, since, as stated 

earlier in this work, damping is the most “elusive” of the modal characteristics, and the most 

difficult to measure experimentally.

Three types of numerical analyses were performed to further investigate the modal 

differences (or lack thereof) of the Group I pile systems; these analyses will be discussed at 

length in the next chapter, as will their relevance to the experimental results described 

above.
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CHAPTER V

NUMERICAL ANALYSES

Three types o f numerical analyses were performed to simulate the frequency response 

characteristics o f the Group I pile-soil systems. In the first, a series of MATLAB® programs 

were written to analytically generate frequency response functions analogous to those 

collected in the experimental portion of the study. For the second, finite element models 

were created to simulate each of the Group I piles, and the natural frequencies o f the 

simulated piles were calculated and recorded. A theoretical solution for a beam resting on 

elastic supports, developed in the text by Weaver, Timoshenko, and Young (Weaver et al., 

1990), was investigated in the third numerical study.

5.1 Analytically Generated Data 

Theories presented in Novak et al., 1978, Novak and Aboul-Ella, 1978a, and Novak and 

Aboul-Ella, 1978b were combined to produce a series of MATLAB® programs which were 

used to calculate frequency response functions corresponding to those measured in the 

experimental study. In the first o f the aforementioned papers, an analytical approach was 

used to “defin[e] the soil reactions to the harmonic motion o f an embedded cylindrical body 

in terms of linear viscoelasticity limited to cases that can be viewed as plane strain.” The
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authors pointed out that “such a situation arises, e.g., when a rigid cylinder extending to 

infinity in an infinite medium undergoes uniform lateral displacements or rotates around its 

axis. Then, no strain develops on the plane perpendicular to the axis and only a unit 

thickness of the medium needs to be considered in the analysis.'1 The approach developed 

in the first paper expanded on earlier studies o f a similar nature by including frequency 

independent material damping (hysteretic damping). The soil reactions were formulated in 

terms of complex stiffnesses associated with vertical, horizontal, antisymmetric (also 

referred to as “rocking”), and torsional displacements o f the embedded cylinder. As stated 

in the paper, the real part of the complex stiffness represents the “true” stiffness, while the 

imaginary part represents damping.

The results of the first paper were extended in the second to include variation of pile and 

soil properties with depth. The pile-soil system was divided into layers, and the portion of 

pile contained in one layer was considered an element. Element stiffness matrices were 

formulated and combined appropriately to form the structural stiffness matrix [K], which 

was recognized as the “link” between the nodal forces {X} and nodal displacements {A}, 

according to the relationship {X} = [K] {A}. The authors noted that “ in this approach, 

explicit mass and stiffness matrices need not be formulated as is the case with the standard 

finite element method. The mass and damping of both the pile and soil are contained in the 

stiffness matrix, [K], which is, therefore, complex and frequency variable.” (Energy 

dissipation in the soil is responsible for the complexity of the stiffness terms.)

In the third paper, the authors stated that the approach developed in the previous paper 

produced an approximate solution, since is was essential to assume that “the soil reaction
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associated with a certain displacement within a particular layer is equal to that of an infinite 

pile undergoing a uniform displacement of the same magnitude in a homogeneous medium 

with the properties of that layer.” They then examined the “acceptability” o f the assumption 

by comparing the approximate solution with more a more rigorous analytical solution, a 

solution produced using the finite element method, and a set o f experimental data. The 

results o f the approximate solution were found to agree quite well with those of the other 

solutions investigated, and the authors mentioned that the primary advantages o f the 

approximate approach were its versatility and relative simplicity.

In the programs that were written (included as Appendix B), the Group I piles were 

discretized into segments whose lengths corresponded to the spacing dictated by the 

measurement locations defined in the experimental studies (shown in Figures 4.4 and 4.5). 

Element lengths used for the exposed portion of the piles were continued into the buried 

portion, and soil properties were set equal to zero for elements falling within the exposed 

length. Analytical frequency response function data was generated for Piles A through E for 

tests along the X and Y axes. Data was produced for Pile A in the nonembedded 

configuration only for tests along the X axis.

After the FRF data was produced, a procedure similar to that used to analyze the 

experimental data was performed; first, the data was imported into the I-DEAS Modal™ 

software package, then the frequency polyreference modal parameter estimation technique 

was used to identify the modal characteristics for each of the piles. As in the experimental 

program, stability diagrams and residues were produced to aid in the parameter estimation 

process.
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5.1.1 Results for Tests Along the X Axis

Figures 5.1 through 5.6 show the driving point frequency response functions generated 

by the programs described above for tests along the X Axis. It should be noted that, as for 

the experimental tests, accelerance data for all 81 source/receiver combinations was 

generated and used in the parameter estimation process, but, for illustration purposes, only 

the driving point FRF’s are shown. In Figure 5.6 (which shows the driving point FRF’s for 

Pile A in its nonembedded configuration), the one FRF that does not “fit” well with the 

others is that for Position 9, located only two inches below the supporting W 10x45 section. 

It is not surprising that the FRF for a position so close to the support (assumed to be fixed in 

the analytical model) is shaped somewhat differently those measured at other locations, 

since the motion of Pile A in its nonembedded configuration is essentially that of a 

cantilevered beam. For such a beam, the acceleration experienced by points very near the 

support is much less than that experienced at locations farther along the beam’s length.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A
c

c
e

le
ro

n
c

t 
M

o
g

n
it

u
d

e
, 

dB
 

P
h

o
se

Driving Point F R F 's for Pile A in Embedded C o n f i g u r a ti o n
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Figure 5.1 Analytically Generated Driving Point Frequency Response Functions for Pile A, 
Embedded Configuration, Along X Axis
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Figure 5.2 Analytically Generated Driving Point Frequency Response Functions for Pile B. 
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Figure 5.3 Analytically Generated Driving Point Frequency Response Functions for Pile C, 
Along X Axis
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Figure 5.6 Analytically Generated Driving Point Frequency Response Functions for Pile A, 
Nonembedded Configuration, Along X Axis
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The natural frequency and damping factor estimates determined for the analytically 

generated data using the frequency polyreference modal parameter estimation technique are 

presented in Tables 5.1 to 5.6 for Piles A through E and for Pile A in the nonembedded 

configuration, respectively, for tests along the X Axis. The results are presented graphically 

in Figures 5.12 and 5.13 as plots of natural frequency and damping versus mode number. In 

a manner similar to that described in Section 4.4.2, mode shapes calculated from the 

parameter estimates were examined and compared, revealing that every pile did not exhibit 

all of the modes present in every other pile. As such, the natural frequency values and 

associated damping values have been separated in the tables and figures so that those values 

corresponding to like modes are given the same mode number.

Table 5.1 Pile A, Embedded Configuration Modal Parameter Estimation Results 
Along X Axis, Analytically Generated Data

Pile A, Embedded Configuration
Analytically Generated Data. Alona X Axis

Mode Natural
Number Frequency, Hz Damping, %

1 80.5 5.5
2 225.2 7.2
3 446.6 9.3
4 752.0 11.7
5 1068.5 43.8
6 1172.2 11.3
7 1631.6 7.8
8 2119.1 6.3
9
10 2639.7 5.9
11 3184.1 5.9
12 3742.0 5.8
13 4327.4 5.1
14
15 4987.5 0.2
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Table 5.2 Pile B Modal Parameter Estimation Results, Along X Axis
Analytically Generated Data

Analytically
Pile B

Generated Data. Alona X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 82.3 3.8
2 228.0 5.6
3 449.3 7.5
4 748.2 9.2
5
6 1131.4 10.0
7 1579.4 9.5
8 2067.3 11.1
9 2377.9 17.3
10 2755.6 9.0
11 3305.2 7.6
12 3821.4 8.7
13 4267.1 7.8
14 4816.7 6.0
15 4991.1 2.1
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Table 5.3 Pile C Modal Parameter Estimation Results, Along X Axis
Analytically Generated Data

Analytically
PileC

Generated Data. Along X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 82.3 3.9
2 228.1 5.7
3 449.6 7.5
4 748.6 9.0
5
6 1127.3 9.9
7 1578.5 10.3
8 1977.6 31.0
9 2113.2 10.2
10 2671.3 10.5
11 3356.3 8.8
12 3902.8 10.4
13 4204.7 9.8
14 4757.1 7.1
15 4987.5 0.2
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Table 5.4 Pile D Modal Parameter Estimation Results, Along X Axis
Analytically Generated Data

Analytically
Pile D

Generated Data. Alonq X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 82.4 3.9
2 228.1 5.7
3 449.6 7.5
4 748.7 9.0
5
6 1126.8 9.9
7 1580.8 10.4
8 2105.6 10.3
9 2696.6 10.0
10 3208.1 18.1
11 3361.8 9.9
12 3992.7 11.2
13 4132.7 11.5
14 4728.9 8.6
15 4987.5 0.2
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Table 5.5 Pile E Modal Parameter Estimation Results, Along X Axis
Analytically Generated Data

Analytically
Pile E

Generated Data. Along X Axis
Mode Natural

Number Frequency, Hz Damping, %
1 82.3 3.9
2 228.1 5.7
3 449.6 7.5
4 748.7 9.0
5
6 1126.8 9.9
7 1580.9 10.3
8 2105.9 10.4
9 2695.6 10.2
10
11 3343.9 10.1
12 4042.5 10.1
13
14 4746.3 9.4
15 4987.5 0.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table S.6 Pile A, Nonembedded Configuration Modal Parameter Estimation Results
Along X Axis, Analytically Generated Data

Pile A, Nonembedded Configuration*
Analytically Generated Data. Alonq X Axis

Mode Natural
Number Frequency. Hz Damping, %

1 11.1 1.0
2 69.6 1.0
3 193.9 1.0
4 377.8 1.0
5 619.9 1.0
6 917.6 1.0
7
8
9
10
11
12
13
14
15

* Experimental data collected in 0-1000 Hz range.
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Figure 5.7 Natural Frequency vs. Mode Number for Analytically Generated Data, 
Along X Axis
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5 .1.2 Results for Tests Along the Y Axis

Figures 5.9 through 5.13 show the driving point frequency response functions that were 

generated by the programs described above for tests along the Y Axis. Again, it should be 

noted that data for all 81 source/receiver combinations were used in the parameter 

estimation process, but, for illustration purposes, only the driving point FRF's are shown.

Driving Point FRF’s for Pile A in Embedded Configuration 
Analytically Generated Data for Tests Along Y Axis

Jji A X.
3 6 0 
. 0 0 'Nn 

^  \

0 0

0 0

0 0

0 0

0 0

0 0
6  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0

Frequency, Hz

Figure 5.9 Analytically Generated Driving Point Frequency Response Functions for Pile A, 
Embedded Configuration, Along Y Axis
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Driving Point FRF ' s for Pile B
Analytically Generated Data for Tests Along Y Axis
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Figure 5.10 Analytically Generated Driving Point Frequency Response Functions for 
Pile B, Along Y Axis
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Driving Point FRF's for Pile C
A n a l y t i c a l l y  Generated Data for Tests Al on g  Y Axis
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Figure 5.11 Analytically Generated Driving Point Frequency Response Functions for 
Pile C, Along Y Axis
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Driving Point F R F 's for Pile D
A n a l y t i c a l l y  G e n e r a te d  Data for Tests A lo ng  Y Ax is

-18 0

-360 
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0 . 0 0
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Frequency, Hz

Figure 5.12 Analytically Generated Driving Point Frequency Response Functions for 
Pile D, Along Y Axis
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Driving Point FRF ’ s for Pile E
A n a l y t i c a l l y  G en e ra t ed  Data for Tests Along Y Axis
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Figure 5.13 Analytically Generated Driving Point Frequency Response Functions for 
Pile E, Along Y Axis
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The natural frequency and damping factor estimates determined for the analytically 

generated data using the frequency polyreference modal parameter estimation technique are 

presented in Tables 5.7 to 5.11 for Piles A through E, respectively, for tests along the Y 

Axis. The results are presented graphically in Figures 5.14 and 5.15 as plots of natural 

frequency and damping versus mode number. In a manner similar to that described in 

Section 4.4.2, mode shapes calculated from the parameter estimated were examined and 

compared, revealing that every pile did not exhibit all of the modes present in every other 

pile. As such, the natural frequency and associated damping values have been separated in 

the tables and figures so that those values corresponding to like modes are given the same 

mode number.

Table 5.7 Pile A, Embedded Configuration Modal Parameter Estimation Results 
Along Y Axis, Analytically Generated Data

Pile A, Embedded Configuration 
Analytically Generated Data. Alonq Y Axis

Mode Natural
Number Frequency, Hz Damping. %

1 154.0 8.0
2 444.8 9.0
3 871.9 9.5
4 1387.6 8.8
5
6 1962.1 7.4
7
8 2604.1 5.4
9
10
11
12 3316.1 3.8
13
14 4080.4 3.0
15
16 4879.9 2.6
17 4999.9 0.0
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Table 5.8 Pile B Modal Parameter Estimation Results, Along Y Axis
Analytically Generated Data

Pile B
Analytically Generated Data. Along Y Axis

Mode Natural
Number Frequency, Hz Damping, %

1 170.1 7.7
2 470.8 11.4
3 951.0 12.9
4 1504.9 9.7
5
6 2043.9 10.5
7
8 2558.0 8.5
9
10
11
12 3171.6 5.8
13 3836.8 5.2
14 4495.9 5.0
15
16
17 4987.5 0.2
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Table 5.9 Pile C Modal Parameter Estimation Results, Along Y Axis
Analytically Generated Data

AnaMicalK
PileC

Generated Data. AJona Y Axis
Mode Natural

Number Frequency, Hz Damping, %
1 170.5 6.6
2 467.9 10.2
3 913.9 14.3
4 1248.0 33.1
5 1559.4 12.1
6 2103.8 12.2
7
8 2521.3 10.9
9 3079.1 7.4
10
11
12 3646.7 7.6
13
14
15
16
17
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Table S. 10 Pile D Modal Parameter Estimation Results, Along Y Axis
Analytically Generated Data

Analvticallv
PileD

Generated Data. Alona Y Axis
Mode Natural

Number Frequency, Hz Damping, %
1 170.5 6.7
2 468.3 10.3
3 921.2 13.5
4 1463.9 26.5
5
6 1575.9 15.6
7
8 2149.4 13.3
9 2491.8 12.8
10 3016.8 9.0
11
12 3477.3 9.4
13 3991.3 7.0
14 4524.1 7.2
15
16 4987.5 0.2
17
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Table 5.11 Pile E Modal Parameter Estimation Results, Along Y Axis
Analytically Generated Data

Analytically
PileE

Generated Data. Along Y Axis
Mode Natural

Number Frequency, Hz Damping, %
1 170.5 6.7
2 468.2 10.3
3 921.2 13.8
4 1521.0 15.9
5
6
7 1679.5 24.8
8 2184.5 14.0
9 2468.5 14.4
10 2970.6 10.7
11 3339.3 10.4
12
13 3846.1 8.5
14 4266.0 8.2
15 4785.8 6.9
16 4987.5 0.2
17
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Natural Frequency vs. Mode Number
Group I, Analytically Generated Data, Along Y Axis
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Figure 5.14 Natural Frequency vs. Mode Number for Analytically Generated Data, 
Along Y Axis
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Damping vs. Mode Number
Group I, Analytically Generated Data, Along Y Axis
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Figure 5.15 Damping vs. Natural Frequency for Analytically Generated Data, Along Y Axis

5.1.3 Discussion of Modal Parameter Estimation Results for Analytically Generated Data 

As was the case with the experimental data, there do not appear to be any significant 

differences discemable in natural frequency values for the five embedded piles in the 0- 

3000 Hz frequency range for which the analytically generated data was produced. Although 

there is some “spread” of the frequency values observed in Figure 5.7 for the sixth through 

fourteenth modes (in the 1125-4800 Hz range), the variation is relatively slight and is 

without a clearly defined pattern from which identification o f a particular embedded pile
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length could be made. Values presented in Figure 5.14 for tests along the Y axis show a 

greater degree of diversity, but once again, no trend is developed that would make one pile 

distinguishable from another. It should also be noted that in the 0-2000 Hz range (which 

corresponds to the range considered valid for the experimental modal parameter estimation 

process), there is essentially no variation at all in the frequency values of the embedded 

piles, for tests along both axes.

The damping plots shown in Figures 5.8 and 5.15 are somewhat more interesting, though 

not much more useful for the embedment length identification process. It is interesting to 

note the damping peak progression in Figure 5.8; as indicated in the figure, a local 

maximum occurs for each of Piles A through D, though not in progressive order (not for Pile 

A, then for Pile B, then C, etc.). Since the progression does not follow any logical trend, no 

clear deduction can be made as to embedded pile length identification from the curves 

shown.

The curves shown in Figure 5.15 for tests along the Y axis hint at a similar local 

maximum progression, and the damping values are more decidedly different for each pile 

than those for tests along the X axis, but once again, a distinct pattern is not identifiable for 

the various piles. Also, for tests along both axes (i.e., for data in Figures 5.8 and 5.15), the 

peak progression is only partially completed in the range of modes corresponding to the 0- 

2000 Hz frequency range valid for modal parameter identification of the experimental 

results (modes 1 through 8 for both figures). So even if the location of the peaks could 

ideally be used to identify piles with certain embedment lengths, that scheme would not be 

feasible in the frequency range that was found to be valid for the experimental results.
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S.2 Finite Element Modeling 

To further investigate the difference in modal characteristics of the Group I model piles, 

finite element models were created of each pile (and of Pile A in the nonembedded 

configuration), and the first forty natural frequencies and mode shapes o f each were 

calculated from an eigenvalue analysis. A series of springs was used to represent the 

restraint provided by the soil surrounding the piles; the spring stiffnesses were derived from 

the magnitude of the complex stiffnesses calculated in the programs discussed above.

5.2.1 Model for Pile A in Nonembedded Configuration

As has been stated previously, if any one o f the model piles is considered in its 

nonembedded configuration (i.e., without any surrounding embedment soil), the resulting 

arrangement is essentially that of a cantilevered beam. In the case of the model piles 

attached to the test facility described in Chapter II, the upper end is the fixed (or nearly 

fixed, as will be discussed shortly) end, while the lower end is free. As a preliminary 

model, then, a 6-foot long cantilevered beam (analogous to Pile A in its nonembedded 

configuration) was created using 72 I-inch long beam elements whose section properties 

were those of an S3x5.7 wide flange section.. (The I-DEAS software package was used for 

finite element modeling throughout the study; an S3x5.7 section was one of those available 

in the I-DEAS section catalog.) To model the fixity of the top end, a clamped restraint 

(allowing no translation or rotation in any direction) was placed at the uppermost node. 

Figure 5.16 shows the model and its orientation with respect to the coordinate axes.
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Figure 5.16 Preliminary Finite Element Model of Pile A, Nonembedded Configuration, 
Clamped at Top End, Free at Bottom End

Natural frequency values obtained from the finite element model are shown in Tables 

5.12 and 5.13 for the first ten vibration modes along the X and Y axes, alongside values
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obtained from the well-known closed-form solution for calculating the natural frequencies 

o f cantilevered beams. The analytical solution, derived from simple beam theory, is o f the 

form shown in Equation 3.12 (presented on page 85).

Table 5.12 Comparison o f Natural Frequency Values Obtained by Theoretical Solution and
by Finite Element Model, Along X Axis

Pile A, Nonembedded Configuration 
Alonq X Axis

Natural Frequency. Hz
Finite

Mode Theoretical Element
Number Solution Model Error, %

1 11.2 11.2 0.6
2 70.0 70.3 0.5
3 196.0 196.7 0.4
4 384.1 384.8 0.2
5 634.9 634.7 0.0
6 948.6 945.5 0.3
7 1324.6 1316.3 0.6
8 1763.3 1746.1 1.0
9 2264.2 2233.4 1.4
10 2830.5 2777.0 1.9
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Table 5.13 Comparison of Natural Frequency Values Obtained by Theoretical Solution and
by Finite Element Model, Along Y Axis

Pile A, Nonembedded Configuration
Alonq Y Axis

Natural Frequency. Hz
Finite

Mode Theoretical Element
Number Solution Model Error. %

1 26.3 26.4 0.5
2 164.7 164.9 0.1
3 461.2 458.7 0.6
4 903.9 890.6 1.5
5 1494.1 1455.0 2.6
6 2232.3 2143.0 4.0
7 3117.3 2944.8 5.5
8 4149.7 3850.0 7.2
9 5329.6 4847.7 9.0
10 6661.3 5927.5 11.0

As expected for the relatively simple case of a cantilevered beam, the natural frequency 

values calculated with the finite element model agreed quite well with the values obtained 

using simple beam theory, especially for the lower modes. It should be noted that for the 

comparison detailed above, shear effects were not included in the formulation of the finite 

elements, since the solution derived from simple beam theory does not take them into 

account. For those subsequent comparisons in which it was appropriate, shear effects were 

introduced into the beam finite elements included in the model.

Quantities obtained from the finite element model were next compared to those 

determined from the experimental modal parameter estimation process (for tests along the X 

axis only since experimental results for tests along the Y axis were not available for this 

configuration). Since shear effects were present in the actual piles tested in the
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experimental program, they were added to the finite element model as well. As before, a 

clamped restraint was placed at the uppermost node. The results of this comparison are 

summarized below in Table S. 14.

Table 5.14 Comparison of Natural Frequency Values Obtained from Experimental Results 
with Those from Finite Element Model, Along X Axis

Pile A, Nonembedded Configuration
Alonq X Axis

Natural Frequency, Hz
Finite

Mode Experimental Element
Number Results Model* Error, %

1 9.1 11.2 19.2
2 63.3 70.1 9.8
3 154.5 195.3 20.9
4 181.6 379.9 52.2
5 261.3 622.0 58.0
6 335.7 918.7 63.5
7 355.5 1266.4 71.9
8 485.6 1661.7 70.8
9 563.5 2100.7 73.2
10 692.7 2580.0 73.2

* Shear effects included, clamped at top node.

As is obvious from Table 5.14, the results do not compare very favorably, especially 

those for modes higher than the second. However, if the third, fifth, sixth, eighth, and tenth 

modes obtained experimentally are considered to be spurious modes that do not represent 

purely flexural vibration along the X axis, and are removed from the list, there is a marked 

improvement in agreement between the two sets of results. Table 5.15 shows the modified

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

values and their associated percentage errors. (A brief discussion of the disregard of 

nonflexural modes is given below.)

Table 5.15 Comparison of Natural Frequency Values Obtained from Experimental Results 
with Those from Finite Element Model, Along X Axis (Modified)

Pile A, Nonembedded Configuration
Alonq X Axis

Natural Frequency, Hz
Finite

Mode Experimental Element
Number Results* Model** Error. %

1 9.1 11.2 19.2
2 63.3 70.1 9.8
3 181.6 195.3 7.0
4 355.5 379.9 6.4
5 563.5 622.0 9.4
6 817.0 918.7 11.1
7 1266.4
8 1661.7
9 2100.7
10 2580.0

* Non-flexural modes removed. 0-1000 Hz range tested. 
** Shear effects included, clamped at top node.

As shown in the table, this procedure greatly improves the correlation between the 

experimental and finite element results. Further improvement can be realized with a 

modification of the clamped boundary condition at the top of the pile. One may recall that 

in the test fixture employed for the experimental test program, the model piles were attached 

to the supporting W 10x45 via welds located along the lines o f intersection between the 

W 10x45 flange edges and the outer surfaces o f the model pile flanges, as illustrated in 

Figure 5.17 below.
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Figure 5.17 Connection Arrangement for Model Piles in Test Fixture

Such a connection arrangement does not actually constitute a built-in condition, as is 

implied by placing a clamped restraint at the uppermost node. Rather, if the model is 

modified by adding a group o f elements representing the section of pile connected to the 

supporting W10x45, and by placing pinned restraints at the nodes corresponding to the weld 

locations, rotation is allowed about the X axis (as oriented in Figure 5.16) at the location of 

the welds, and the pile is free to translate in the Z direction between the welds. This 

restraint condition, shown in Figure 5.18, is a more realistic simulation of the actual 

connection detail, as evidenced by the improved agreement between the modified finite 

element model results and the experimental results, summarized below in Table 5.16.
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/ 7
Figure 5.18 Modified Boundary Condition Arrangement

Table 5.16 Comparison ofNatural Frequency Values Obtained from Experimental Results 
with Those from Finite Element Model, Along X Axis (Modified Boundary Conditions)

Pile A, Nonembedded Configuration
Alonq X Axis

Natural Frequency, Hz
Finite

Mode Experimental Element
Number Results* Model** Error, %

1 9.1 10.3 11.8
2 63.3 65.0 2.7
3 181.6 182.8 0.6
4 355.5 358.1 0.7
5 563.5 589.7 4.4
6 817.0 873.8 6.5
7 1204.6
8 1563.9
9 1859.1
10 2125.8

* Non-flexural modes removed. 0-1000 Hz range tested.
* Pins allowing rotation about X axis a t weld locations.
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Though the error between results for the first mode is still relatively high, that for each 

successive mode is greatly reduced, and it can be concluded that the modified boundary 

condition arrangement more accurately simulates the physical reality of the model pile test 

fixture than the clamped configuration. Confident, then, that the modified finite element 

model is an accurate representation o f the piles in their nonembedded state, this model was 

used as a basis for the finite element study o f the Group I embedded piles.

Regarding the presence of nonflexural modes in the experimental results, the following 

comments can be made. Because o f the difficulty encountered in impacting the piles so that 

only purely flexural modes are excited, it is not unreasonable to expect that some coupled 

torsional and axial modes (as well as flexural modes in the “off-axis” direction) would be 

apparent in the experimental frequency response function data, and would therefore be 

included in estimations of natural frequency. (This difficulty is especially pronounced when 

testing piles with rather “complex” shapes, such as the S-shaped section used in this study.) 

For the nonembedded situation, the “expected” natural frequency values for flexural modes 

are known well enough that it was relatively easy to distinguish the nonflexural modes 

identified from the modal parameter identification process (as was done to produce Table 

5.15). Unfortunately, since there are no theoretical, closed-form solutions available for the 

more complex embedded pile systems, this “culling” procedure was not easily performed for 

the embedded model pile experimental results. However, since the purpose of the present 

study was to identify the embedded lengths of piles from the differences in their modal 

characteristics, only a comparison of the modal values between piles was necessary, as
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opposed to an absolute correlation of their values with theoretical solutions. With this in 

mind, the numerical analyses described in this chapter were performed to examine the 

relationship between numerical modal results for each pile, rather than to “match” them 

exactly to the experimental results.

5.2.2 Finite Element Results for Embedded Piles

Finite element models for each of the Group I piles were created by adding beam 

elements to the basic model described above, in lengths corresponding to the embedded 

portion o f each pile. To represent the restraint imposed on the piles by the surrounding soil, 

translational and rotational springs (resisting motion in the models’ X and Z directions) 

were attached to each of the nodes within the embedded portion. As mentioned in the 

introduction to Section 5.2, the spring stiffnesses were derived from the magnitude o f the 

complex stiffnesses calculated in the programs discussed in Section 5.1; their values were 

adjusted to correlate with the tributary area between nodes. The model for Pile C is 

depicted below in Figure 5.19; models for the remaining piles are similar in appearance, 

differing only in the length o f the spring-restrained embedded portion.
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Figure 5.19 Finite Element Model for Pile C in Its Embedded Configuration

5.2.2.1 Results for Tests Alone the X Axis

Results o f the finite element frequency analyses for the Group I embedded piles are 

presented in Tables 5.17 through 5.21 for tests along the X axis, and are summarized for the 

same in graphical format in Figure 5.20.
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Table 5.17 Natural Frequency Results from Finite Element Model for Pile A, Embedded
Configuration, Along X Axis

Pile A, Embedded Configuration 
Finite Element Results. Alonq X Axis

Mode Number
Natural Frequency, 

Hz
1 85.6
2 236.3
3 461.0
4 753.4
5 1104.7
6 1494.0
7 1827.6
8 2086.8
9 2476.3
10 2590.2
11 2913.5
12 3302.1
13 3794.3
14 4344.5
15 4913.7
16 5479.9
17 5860.7
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Table 5.18 Natural Frequency Results from Finite Element Model for Pile B, Along X Axis

PileB
Finite Element Results. Along X Axis 

Natural Frequency, 
Mode Number Hz

1 85.6
2 236.3
3 461.0
4 753.5
5 1104.7
6 1494.2
7 1828.0
8 2087.6
9 2479.0
10 2546.9
11 2644.9
12 2887.4
13 3166.9
14 3560.4
15 3957.8
16 4414.8
17 4894.8
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Table 5.19 Natural Frequency Results from Finite Element Model for Pile C, Along X Axis

PileC
Finite^Element^Results^

Natural Frequency, 
Mode Number Hz

1 85.6
2 236.3
3 461.0
4 753.5
5 1104.7
6 1494.2
7 1828.0
8 2087.6
9 2479.1
10 2540.8
11 2575.7
12 2680.7
13 2872.0
14 3093.8
15 3389.4
16 3718.2
17 4080.9
18 4466.0
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Table 5.20 Natural Frequency Results from Finite Element Model for Pile D, Along X Axis

PileD
FiniteJEIemenU?^^

Natural Frequency, 
Mode Number Hz

1 85.8
2 236.3
3 461.0
4 753.5
5 1104.7
6 1494.2
7 1828.0
8 2087.6
9 2479.1
10 2539.1
11 2555.5
12 2603.7
13 2704.1
14 2862.0
15 3046.6
16 3273.1
17 3556.2
18 3839.2
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Table 5.21 Natural Frequency Results from Finite Element Model for Pile E, Along X Axis

Pile E
Finite Element Results. Along X Axis 

Natural Frequency, 
Mode Number Hz

1 85.6
2 236.3
3 461.0
4 753.5
5 1104.7
6 1494.2
7 1828.0
8 2087.6
9 2479.1
10 2538.5
11 2547.6
12 2573.4
13 2627.4
14 2720.6
15 2855.0
16 3012.8
17 3195.6
18 3429.8
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Natural Frequency vs. Mode Number
l-DEAS FEA Natural Frequency Solutions, Along X Axis
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Figure 5.20 Natural Frequency Results from Finite Element Modeling vs. Mode Number, 
Along X Axis

5.2.2.2 Results for Tests Along the Y Axis

Results of the finite element frequency analyses for the Group I embedded piles are 

presented in Tables 5.22 through 5.26 for tests along the X axis, and are summarized for the 

same in graphical format in Figure 5.21.
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Table 5.22 Natural Frequency Results from Finite Element Model for Pile A, Embedded
Configuration, Along Y Axis

Pile A, Embedded Configuration 
Finite Element Results, Along Y Axis

Mode Number
Natural Frequency, 

Hz
1 192.3
2 497.9
3 905.2
4 1377.2
5 1886.9
6 2410.7
7 2851.3
8 2969.9
9 3421.5
10 3863.0
11 4339.7
12 4856.6
13 5382.9
14 5900.8
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Table 5.23 Natural Frequency Results from Finite Element Model for Pile B, Along Y Axis

Pile B
Finite Element Results. Along Y Axis

Mode Number
Natural Frequency, 

Hz
1 193.0
2 499.4
3 907.5
4 1380.3
5 1890.9
6 2414.6
7 2865.7
8 2879.4
9 3050.9
10 3426.8
11 3765.7
12 4178.1
13 4603.5
14 5006.7
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Table 5.24 Natural Frequency Results from Finite Element Model for Pile C, Along Y Axis

PileC
Finite Element Results. Along Y Axis 

Natural Frequency, 
Mode Number Hz

1 193.0
2 499.4
3 907.5
4 1380.3
5 1890.9
6 2414.8
7 2863.1
8 2870.9
9 2930.3
10 3128.9
11 3429.0
12 3704.0
13 4065.8
14 4392.2
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Table 5.25 Natural Frequency Results from Finite Element Model for Pile D, Along Y Axis

PileD
Finite Element Results. Along Y Axis

Mode Number
Natural Frequency, 

Hz
1 193.0
2 499.4
3 907.5
4 1380.3
5 1890.9
6 2414.8
7 2863.0
8 2872.0
9 2889.8
10 2987.2
11 3179.8
12 3430.8
13 3664.2
14 3972.7
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Table 5.26 Natural Frequency Results from Finite Element Model for Pile E, Along Y Axis

Pile E
Finite Element Results. Alonq Y Axis

Mode Number
Natural Frequency, 

Hz
1 193.0
2 499.4
3 907.5
4 1380.3
5 1890.9
6 2414.8
7 2864.8
8 2871.3
9 2875.9
10 2926.7
11 3036.3
12 3216.5
13 3432.1
14 3635.7
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Natural Frequency vs. Mode Number
l-OEAS FEA Natural Frequency Solutions, Along Y Axis
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Figure 5.21 Natural Frequency Results from Finite Element Modeling vs. Mode Number, 
Along Y Axis

5.2.3 Discussion of Natural Frequency Results from Finite Element Modeling of Embedded 

Piles

Figures 5.20 and 5.21 exhibit two dominant features when viewed in terms of the goals 

of the present study. The first is that the natural frequencies for the first nine modes (up to 

approximately 2500 Hz) for tests along the X axis, and for the first seven modes (up to 

approximately 2800 Hz) for tests along the Y axis, are virtually identical in magnitude. 

Secondly, above those “threshold” frequencies, there is a gradual “spreading” of the natural 

frequency values as the mode number increases; this spreading is distinctive in that it
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progresses from Pile A to Pile E in successive order. This frequency behavior with 

increasing mode number suggests that the restraint provided by the soil surrounding the 

piles (or by the springs in the case o f the finite element model) does not appreciably affect 

the vibrational behavior o f each pile differently until the threshold frequency is reached. 

Once the critical frequency value is attained, however, the natural frequencies progressively 

decrease (for a constant mode number) as the percentage of pile that is embedded (and 

therefore heavily restrained) becomes larger.

The trends described above become visibly apparent when viewing the mode shapes for 

each pile with increasing mode number. From a qualitative standpoint, three “stages” are 

apparent in the mode shape progression. (The first forty mode shapes for Pile A in its 

embedded configuration are presented in Appendix C. Those modes that do not appear in 

the figures are axial and torsional modes.) In the first stage, which consists of 

approximately modes one through nine for modes along the X axis, and one through seven 

for modes along the Y axis, the mode shapes are similar to those of a beam supported at 

both ends. The majority of the deformation takes place in the exposed portion of the pile (in 

the classical sine wave oscillation pattern), especially for the first two to three modes in 

each direction. In the later modes of the first stage, there is some deformation in the spring 

region, but the bottom tip of the pile for each of these modes remains stationary.

In the second stage o f mode shape progression, deformation in the exposed portion is 

similar to that in the first stage, but more excessive deformation is noticed in the embedded 

portion, and the bottom tip no longer exhibits zero displacement. In fact, for some modes in 

the second stage, the magnitude of deformation is much greater in the embedded portion

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

than in the exposed portion. The second stage proceeds somewhat gradually into the third, 

in which the mode shapes consist of continuous sine wave oscillations throughout the 

exposed portion and into the embedded portion.

Also shown in Figures 5.20 and 5.21 are the natural frequency vs. mode number curves 

for Pile A in its nonembedded configuration. As would be expected intuitively, frequency 

values calculated for the nonembedded pile are lower than those determined for the same 

pile in its embedded configuration, and lower than those for each of the embedded piles at 

frequencies below the threshold described above. This feature seems reasonable in view of 

the fact that the cantilevered pile is not stiffened by the surrounding soil and its tip is free to 

vibrate, so it should exhibit lower frequencies than the stiffened, embedded piles. At 

frequencies higher than the threshold, however, the restraining effect o f the soil becomes 

dominant, and the frequencies are reduced accordingly. It is interesting to note, 

incidentally, that for very high mode numbers (not shown in Figures 5.20 and 5.21), the 

frequencies for the nonembedded pile become essentially identical to those for Pile A in its 

embedded configuration.

One last, but quite important, comment should be made concerning the results 

summarized in Figures 5.20 and 5.21. Since the threshold frequency below which there is 

no variation in natural frequency with embedment length (for a constant mode number) is 

above that for which the experimental data could reasonably be analyzed, it appears that 

identification o f pile embedment length using the method investigated in this study may not 

be feasible in its present state. Additional comments regarding this conclusion will be 

provided in Chapter VII.
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5.3 Theoretical Natural Frequency Calculation for Beam Resting on Elastic Supports 

To continue the investigation of the variation in natural frequency with pile embedment 

length, a theoretical solution based on the work by Weaver, Timoshenko, and Young 

(Weaver et al., 1990) for beams on elastic supports or elastic foundations was formulated 

for the Group I embedded piles. The derivation is provided in Appendix D of this paper; it 

is based on the fact that most in-service beams have end restraints falling into an 

intermediate state o f fixity ranging between the extremes o f full restraint (fixed) and zero 

restraint (free). As stated by the authors, if the restraints can be considered to be linearly 

elastic in nature, they may be idealized as springs, in the manner shown in Figure 5.22 

below.

pj .EI

Figure 5.22 Beam on Elastic Supports Idealized as Springs

For the purposes o f this theoretical development, the lefr end was considered to be fully 

fixed (though it was determined in the previous section that the connection of the model 

piles to the supporting W 10x45 section does not constitute a truly fixed condition). In the
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fully fixed condition, ki and k2 (which represent the translational and rotational stiffnesses, 

respectively, of the springs at the left end) are equal to infinity. The stiffnesses contributed 

by the embedded portions o f the piles were derived once again from the analytical programs 

described in Section 5.1, and were “lumped” mathematically into the two springs at the right 

end, k3 and let. The procedure by which this “lumping” was accomplished is described in 

Appendix D. The theoretical solution was derived only for the case corresponding to tests 

along the X axis, since it was apparent from the investigations previously described that 

tests along the Y axis produced quite similar results in terms of the variation o f natural 

frequency with embedded pile length. For the orientation pictured in Figure 5.22, then, the 

translational spring, k3, resisted motion in they direction, while the rotational spring, Iq, 

resisted rotation about the z axis. (The S3x5.7 section was oriented such that its X axis, as 

pictured in Figure 4.2, shown on page 90, corresponded to they axis shown in Figure 5.22.)

5.3.1 Results o f Theoretical Natural Frequency Calculations

Results o f the calculations for the first ten natural frequencies of the Group I embedded 

piles, calculated according to the procedure described in Appendix D, are presented in 

Tables 5.27 through 5.31. To determine the fixity range o f the Group I piles in relation to 

the fixed-free condition and the fixed-fixed condition, the first ten natural frequencies for 

these cases were computed as well. For the fixed-free condition, springs k3 and ki were 

given stiffnesses equal to zero; for the fixed-fixed condition, k3 was assigned a value of 

lxlO30 lb/ft and k  was set equal to lxlO30 ft-lb/rad. Although the results for the latter two
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cases are not presented in tabular format, they do appear on the graph summarizing the 

natural frequency information, which is presented in Figure 5.23.

Table 5.27 Theoretical Natural Frequencies for Pile A, Embedded Configuration

Pile A, Embedded Configuration 
Theoretical Solution (Weaver et al.)

Mode Number
Natural 

Frequency, Hz
1 94.3
2 262.8
3 519.0
4 862.8
5 1293.7
6 1811.2
7 2414.3
8 3101.3
9 3870.0
10 4717.8

Table 5.28 Theoretical Natural Frequencies for Pile B

Pile B
Theoretical Solution (Weaver e t al.)

Mode Number
Natural 

Frequency, Hz
1 98.0
2 270.9
3 532.3
4 881.5
5 1318.8
6 1843.4
7 2455.3
8 3153.8
9 3937.8
10 4805.9
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Table 5.29 Theoretical Natural Frequencies for Pile C

PileC
Theoretical Solution (Weaver et al.)

Mode Number
Natural 

Frequency, Hz
1 99.4
2 274.4
3 538.5
4 890.9
5 1331.6
6 1860.4
7 2477.1
8 3181.1
9 3972.0
10 4848.5

Table 5.30 Theoretical Natural Frequencies for Pile D

PileO
Theoretical Solution (Weaver et al.)

Mode Number
Natural 

Frequency, Hz
1 100.2
2 276.3
3 542.0
4 896.5
5 1339.4
6 1871.0
7 2490.7
8 3198.3
9 3993.4
10 4875.4
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Table 5.31 Theoretical Natural Frequencies for Pile E

PileE
Theoretical Solution (Weaver et al.)

Mode Number
Natural 

Frequency, Hz
1 100.7
2 277.6
3 544.3
4 900.1
5 1344.7
6 1878.2
7 2500.2
8 3210.2
9 4008.3
10 4894.0

N atural F requency  vs. M ode N um ber

-♦ -P i le  A, Embedded 
- • - P i l e B  
- A - Pile C 
- • - P i l e D
- * - P i le  E 'I
-o -F ix ed -F ree  Pile 
-a-F ixed-F ixed  Pile

M ode N um ber

Figure 5.23 Theoretical Natural Frequency vs. Mode Number
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5.3.2 Discussion of Theoretical Natural Frequency Results

Examination o f Figure 5.23 reveals that, for the embedded piles, there is only a slight 

variation in the natural frequencies with embedment depth, for a given mode number. In 

fact, the maximum percentage difference for Piles B-E from the Pile A values is just less 

than 7%, as shown in Figure 5.24 below.

Percent Difference vs. Mode Number 
Percent Difference from Pile A Results, Theoretical (Weaver et al.)

Solution

ou

£

o2
oa.

8

7

6

5 - • - P i l e  B . 
- a —P ile C ;i 
- • - P i le  Dii 
Hie-Pile E ::

4

3

2

1

0
2 7 83 5 6 9 101 4

Mode Number

Figure 5.24 Percent Difference from Pile A Theoretical Natural Frequency Results

It is also evident from Figure 5.23 that the natural frequencies for each of the Group I 

embedded piles are much closer in magnitude to those for the fixed-fixed beam than to those 

for the fixed-free beam. This characteristic indicates that the soil surrounding the base of
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the piles provides a significant degree of fixity, even for Pile A, whose embedded length is 

only one foot (out o f its six foot total length). Once again, as was the case with the 

experimental results and with the other two types of numerical analyses described earlier in 

this chapter, it appears that identification of pile embedment length using modal attributes is 

not practically feasible.
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CHAPTER VI

MODEL PILE WAVE PROPAGATION

To supplement the information gathered in the experimental and numerical modal 

analyses described in Chapters IV and V, several experiments were conducted to investigate 

the wave propagation characteristics of the S3x5.7 model pile section. This portion of the 

study was performed to determine the feasibility of the nondestructive identification of pile 

embedment depths using the “traveling wave” approach, rather than the modal analysis 

approach. Although the data interpretation procedures for these two philosophies van 

somewhat, the knowledge they provide is similar in nature. The wave propagation approach 

has been used successfully with tests involving longitudinal impacts (as described in 

Chapter I), though one notable drawback is that it has traditionally relied upon the rather 

subjective visual identification of graphical data trends. In the present study, a preliminary 

attempt was made to identify and manipulate the propagation characteristics o f flexural 

waves, rather than longitudinal waves, since access to the top o f a pile (which is usually 

required to impart a longitudinal impact) is typically not conveniently achieved, as noted in 

Chapter I.

For analyses involving the wave propagation approach, the shape of the cross section 

through which waves are travelling becomes a noteworthy topic for consideration. For
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example, when an impact is applied to the center of the web of an S3x5.7 model pile 

section, reflections of the resultant wave occur not only at the flange-web intersections, but 

also at the four “free” flange edges. Consequently, the potential exists for quite a complex 

wave pattern to be created as the reflected waves interact. With this realization in mind, a 

freely-suspended steel beam having a rectangular cross section (a length o f flat stock) was 

tested prior to the S3x5.7 model pile section so that comparisons could be made between 

results for this relatively simple shape and for the somewhat more complex model pile 

shape. Also, for the preliminary analyses conducted here, the S3x5.7 section was tested in 

its nonembedded configuration—the specific boundary conditions utilized for the tests will 

be described in more detail in succeeding sections of this chapter.

6.1 Spectrogram Description

Hodges et al., in their 1985 paper, “investigate^] the use of a familiar tool in an 

unfamiliar context." The authors described a method by which wave propagation in 

structures could be examined using simple acceleration measurements, along with a 

mathematical tool typically used in acoustical studies called a spectrogram (referred to as a 

sonogram in the paper by Hodges et al., also referred to elsewhere as a short-time Fourier 

transform (STFT)). A spectrogram is a three-dimensional representation o f the time-varying 

power spectrum of a signal that has been measured in the time domain. Typically, the signal 

is divided in time into overlapping segments, an appropriate mathematical window is 

applied to each segment, and the Fourier transform of each is computed. A three- 

dimensional array is then formed whose amplitude represents the power spectrum of the
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signal, plotted against time and frequency. An example of a spectrogram is presented in 

Figure 4.1; what is shown is a surface plot of the spectrogram for a stretched string 

subjected to a force impulse at 3/10 of its length and measured at a location 4/5 along its 

length. Although not indicated in the figure, the vertical axis represents the power-spectral 

amplitude o f the signal plotted on a linear scale.

Frequency

Figure 6.1 Spectrogram for a Force Impulse Applied to a Stretched String 
(Hodges et al., 1985)
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One noteworthy characteristic of the spectrogram is that its “shape”, and consequently

the information that can be gathered from its interpretation, is highly dependent upon the

length o f the time segments chosen for the frequency analysis. Since time and frequency are

not truly independent variables, but are both temporal in nature, there is a “trade-off” of

sorts in their resolution when a spectrogram is formed. Hodges et al. described the

compromise by noting that

[s]onograms are subject to what is essentially Heisenberg’s Uncertainty Principle. It 
turns out that the change in the sonogram pictures as one varies the window length 
mirrors the transition from a ‘mode viewpoint’ (with a long window) to a ‘travelling 
wave viewpoint’ (with a short window) of how the string (or whatever other structure 
we are considering) behaves.

Figures 6.2 (a) through (d) (Hodges et al., 1985) show the progression o f spectrogram 

shapes for the stretched string, starting with a time window that is long compared to the 

string’s natural period in (a), and progressing in (d) to a window having a time span short 

enough to allow identification o f specific impulses in the time domain.
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Figure 6.2 (a) -  (d) Spectrograms for a Stretched String with Window Lengths Decreasing
from (a) to (d) (Hodges et al., 1985)

As evidenced in the figures, if the time window over which the Fourier analysis is 

performed is decreased (producing a greater number of time segments with shorter lengths, 

thereby increasing the time resolution), the frequency resolution decreases accordingly. In 

Figure 6.2(a), there is essentially no variation in the spectrogram with time after the initial 

stage, in which the authors note that the very long time window makes the signal appear to 

start slowly. There is however, a clear modal picture corresponding to the shape o f the 

signal’s power spectrum. Figure 6.2(b) shows the case for which the time window is 

comparable to the natural period o f the string, and it can be seen that the time variation has
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become more distinct, while the frequency variation has lost some of its definition. Figures 

6.2(c) and (d) follow the same trend; the time window for (d) is shorter than the separation 

of the individual impulses created by the force application, so that these impulses can be 

identified along the time axis; there is, however, no variation in the spectrogram with 

frequency. At this point, Hodges et al. state that a “travelling wave” picture has been 

formed which “mirrors the original time series exactly.”

Although spectrogram shapes vary with time window length, it is important to note that 

the information contained in each is identical. As the authors state, selection of the most 

appropriate window length is governed by the specific application for which the 

spectrogram is being created—different aspects of a structure’s behavior become apparent 

in different spectrograms. Hodges et al. suggest that it is often prudent to create a number 

of spectrograms with a range of window lengths to thoroughly identify a structure’s 

vibrational characteristics.

6.2 Dispersion in Spectrograms

Another property related to wave propagation that affects the appearance o f a

spectrogram is the presence of dispersion in the signal. If a structural system is excited in

such a manner that the wave propagation velocity is a function of frequency, dispersion is

said to occur. Such is the case for a beam that has been excited transversely to produce

flexural waves. Hodges et al. describe the effect that dispersion has on a spectrogram’s

shape in the following discussion of a beam subjected to a transverse impact:

Before looking in detail at the [spectrogram], one should decide what one expects to 
see. If one were to restrict attention to a particular narrow frequency range, one 
would see the evolution in time and frequency of a wave packet composed of that
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range of frequencies. This will reflect back and forth along the beam at a speed equal 
to the group velocity o f the beam at that frequency.... Thus in that narrow frequency 
range, one should see...packets [of impulses] passing the observing point in each 
round-trip period of the beam at that group velocity. The only difference from the 
string will be that different frequency bands will produce different group velocities: 
the group velocity for a bending beam is zero at zero frequency, and increases 
proportional to the square root of frequency. Thus, one expects to see a sequence of 
behaviour (sic) in the [spectrograms] generally similar to those (sic) for the string, 
except that the lines corresponding to a given arrival will no longer be straight, 
connoting synchronous arrival of all frequencies, but will be curved according to the 
inverse of the group velocity-ffequency relation.

Figures 6.3 (a) through (c) (Hodges et al., 1985) show the spectrograms for a simply- 

supported beam impacted transversely at 3/10 o f its length for a signal recorded at 4/5 of its 

length. Once again, the time window chosen for the spectrogram decreases progressively 

from (a) to (c); the curving of the spectrogram “bands” caused by the dispersion 

phenomenon is quite pronounced in each of the figures. Additionally, one can again 

identify the decrease in frequency resolution as the time-domain resolution increases.

Frequency
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Figure 6.3 (a) -  (c) Spectrograms for a Beam Impacted Transversely with Window
Lengths Decreasing from (a) to (c)
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6.3 Spectrograms for Steel Flat Stock

Tests were performed on a 20.2-foot long rectangular steel section having a 1.25” x .25” 

cross section. The freely-suspended beam was impacted on one o f its 1.25-inch sides with 

the hammer described in Chapter II (fitted with its plastic tip) at a point corresponding to 

3/10 o f its length; additional tests were performed with the impact applied at 8/10 of the 

beam length. Acceleration was then measured in the same direction at various locations 

along its length. In the acceleration time history for the measurement point, one might 

expect to see “bursts” of waves that appear as the bending waves created by the impact 

travel past the measurement point the first time, then are reflected from the end of the beam 

and pass by once again, then pass again after reflection from the other end o f the beam, etc. 

What one sees instead is an acceleration time history like that shown in Figure 6.4, in which 

no bursts of waves corresponding to specific wave passages are discernible.

Acceleration Response of Flat Stock to Hammer impact 
6 0 0 , 1 , 1     , ,

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.06
Time. sec.

Figure 6.4 Acceleration Time History for Hammer Impact on Flat Stock, Impact Applied at 
.3L, Acceleration Measured at .8L
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No clearly defined wave reflections are apparent in Figure 6.4 because dispersion of the 

bending waves has caused multiple reflections to pass the measurement point at every given 

time. Since, in a dispersive medium, waves o f different frequencies travel at different 

velocities, waves of varying frequencies are almost continuously traveling through the 

reflection point and being reflected from the beam ends. In his treatment of the topic, 

Newland (Newland, 1996) notes that “[ljulls between the arrival o f reflected waves are not 

visible on the time history.”

As stated previously, acceleration data similar to that shown in Figure 6.4 was collected 

at several points along the beam, and spectrograms were produced for each case using 

overlapping time segments of varying lengths. In every case, the Hanning weighting 

function was used to window the overlapping segments, and results from five impacts were 

averaged for each spectrogram to minimize bias error. The results of two calculations 

(performed using MATLAB® mathematical software) are shown in Figure 6.5 below; in 

Figure 6.5(a), the time record was divided into 128-term blocks, with each block advanced 

eight points from the beginning of the last. In Figure 6.5(b), the segment size was reduced 

to 32 points, and each block was advanced only two points from the beginning of the 

preceding block. For convenience in plotting, a logarithmic scale was used for the vertical 

axes o f the pictured spectrograms.
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Average Specgram Magnitude for Flat Stock, Hammer at 8L, Accel at 8L

6000 0 Time. sec
Frequency, Hz

Figure 6.5(a) Spectrogram for Flat Stock Subjected to Transverse Impact 
(Window Length = 128)
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Average Specgram Magnitude for Flat Stock, Hammer at ,8L, Accel at .8L

F requen cy ,  Hz

Figure 6.5(b) Spectrogram for Flat Stock Subjected to Transverse Impact 
(Window Length = 32)
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As in Figure 6.3, the curving bands indicative of waves traveling in a dispersive medium

are clearly apparent. Also, one can yet again see the improvement in time resolution as the

frequency resolution decreases from case (a) to case (b). In fact, in Figure 6.5(b), one can

begin to distinguish the “packets” o f waves passing the measurement point at constant

successive time intervals. Such plots are experimental “confirmation” o f the principles

illustrated earlier by the analytically generated data of Figure 6.3

In his comparison of the spectrogram with the harmonic wavelet transform, Newland

makes an important statement concerning a spectrogram’s (which Newland refers to as a

short-time Fourier transform) usefulness:

At any chosen frequency..., it can be seen that the mean-square response rises and 
falls as waves arrive from successive reflections and then pass the measuring point. 
Knowing the dimensions o f the beam and the position of the measuring point relative 
to the two ends, it is possible to estimate the group velocity of the waves and to 
determine its dependency on frequency from the time-frequency map.

Using this method and the spectrogram of Figure 6.5(b), a dispersion relationship for the flat

stock was computed; the results are shown in Figure 6.6 below.
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Dispersion Relationship for Steel Flat Stock 
Beam Dimensions: 242.2Mx1.25"x.25"

0
0
>I
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9

6
500 1000 1500 2000 2500 3000

■ Hammer & Receiver 
@ 0.8L _____

Frequency, Hz.

Figure 6.6 Dispersion Relationship for Steel Flat Stock

The curve pictured above agrees somewhat well with that corresponding to the generally 

accepted formula for estimating the dispersion relationship for flexural waves in a long, thin 

beam, given as follows (Cremer et al., 1993):

cp = ^ 1 .8  hfc, (6.1)

where

cp = phase velocity for flexural waves in a long, thin beam, 

h = thickness of the beam,
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/ =  frequency, and

ct = longitudinal wave speed in the beam material.

Though they are similar in form, there is some discrepancy in magnitude between the two 

curves, perhaps due to nature of the suspension apparatus employed to freely suspend the 

beam. A polynomial fit of the experimentally derived curve (such as that o f Figure 6.6) can 

be computed, though, to produce a dispersion relation for each particular testing situation. 

Such a fit, then, can be used to determine the unknown length of a portion o f a beam, if the 

exposed (known) length can be measured. For the most basic case, in which the beam is 

nonembedded, a method to determine the unknown length is as follows.

First, the receiver should be located at a position that is less than half the distance from 

the exposed end to the point where the beam is no longer exposed, and the impact applied at 

the same location. This placement will ensure (for the nonembedded case) that the first 

wave arrival at the measurement point will be that of the wave that has traveled from the 

impact point (also the measurement location) to the exposed beam end and back to the 

receiver location, a distance which is known. After creating a spectrogram of the measured 

data, plots of the spectrogram amplitude versus time can be generated for several frequency 

values. From these plots, the arrival time of the first wave can be determined and used, 

along with the known traveled distance, to calculate the group velocity of the flexural waves 

for each of the specific frequencies. From these values, the wavelengths at each frequency 

can be computed and plotted versus the frequency to produce a dispersion curve similar to
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that shown in Figure 6.6. As stated previously, a polynomial curve fit of the measured curve 

can be produced so that wavelengths can be determined for any corresponding frequency.

At this stage, any frequency and its corresponding wavelength can be selected from the 

dispersion curve and multiplied to determine the phase velocity (and subsequently the group 

velocity) at that particular frequency. This value can then be multiplied by the time of 

arrival of the second peak o f the spectrogram amplitude versus time plot for that frequency 

(which should correspond to the time it takes for the wave to travel from the receiver 

location to the nonexposed beam end and back to the measurement point). Knowing the 

phase velocity and the time it takes to travel the unknown distance, simple multiplication of 

those two parameters will yield the unknown distance. Of course, the calculated distance 

would then be divided by two to discover the actual distance between the receiver location 

and the nonexposed beam end.

The procedure described above is somewhat more elaborate than is actually necessary, 

but calculation of the dispersion curve allows for the investigation of any frequency of 

interest (within the range of the spectrogram calculation). All that is actually needed (for 

the simple case of a nonembedded beam) is to calculate the group velocity from one 

spectrogram amplitude versus time plot at a particular frequency. Then the time to the 

second peak o f the same plot could be observed and multiplied by that group velocity (and 

divided by two) to determine the unknown length from the receiver to the nonexposed beam 

end. Since it is not much more computationally intensive, though, to repeat this process for 

several frequencies, it is a good idea to make multiple determinations of the unknown 

distance to ensure that they are essentially identical.
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6.4 Spectrograms for S3x5.7 Model Pile Section

After confirming that the spectrogram could be successfully used to characterize the 

wave propagation behavior o f the steel flat stock, acceleration measurements were collected 

for a transverse impact applied to the web of the S3x5.7 section used for the model piles.

For the initial analysis, a 9-foot long section was freely suspended in a manner similar to 

that for the flat stock. As before, the plastic tip was fitted to the impact hammer, and the 

impact was applied at the same location (or very near) that the acceleration was measured; 

both were accomplished at a position 8/10 of its length from the end of the beam. Once 

again, spectrograms were produced using overlapping time segments of varying lengths, of 

which three are shown below. The Hanning window was used as a weighting function for 

the overlapping segments, and results from five impacts were averaged for each spectrogram 

to minimize bias error.

Three of the spectrograms calculated for the S3x5.7 section are shown below; for Figure 

6.7(a), the windowed segments consisted of 128 terms each, with each segment advanced 

eight terms from the beginning of the last. In Figure 6.7(b), the segment size was reduced to 

64 terms, and each block was advanced four points from the beginning of the preceding 

block. The segment size was again reduced in Figure 6.7(c) to 32 terms, with each block 

advanced two points from the beginning of the previous block. Once again, a logarithmic 

scale has been employed for the vertical axis, on which the spectrogram magnitude is 

plotted.

231

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

Average Specgram Magnitude for Free-Free S3x5.7, Hammer at 8L, Accel at ,8L

6000 0 s e c
Frequency, Hz

Figure 6.7(a) Spectrogram for S3x5.7 Section Subjected to Transverse Impact 
in Middle o f Web (Window Length = 128)
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Average Specgram Magnitude for Free-Free S3x5.7, Hammer at 8L, Accel at ,8L

Frequency , Hz

Figure 6.7(b) Spectrogram for S3x5.7 Section Subjected to Transverse Impact 
in Middle o f Web (Window Length = 64)
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Average Specgram Magnitude for Free-Free S3x5.7, Hammer at ,8L, Accel at .81-

Frequency , Hz

Figure 6.7(c) Spectrogram for S3x5.7 Section Subjected to Transverse Impact 
in Middle of Web (Window Length = 32)
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Although an increase in time resolution can be discerned as the window length is 

decreased from (a) to (c), the curving bands that indicated dispersion in the flat stock section 

are not clearly apparent in the spectrograms above. Additionally, plots o f spectrogram 

magnitude versus time for various frequencies do not exhibit any corresponding peaks that 

can be readily identified as the same wave arrival in each plot. (Tests were repeated on a 

beam fixed at one end and free at the other; similar results were obtained.) Much of the 

poor definition in the spectrograms for the S3x5.7 section may be due, as indicated earlier, 

to the presence o f the several reflecting surfaces inherent in the shape of the cross section.

It is not possible to say with certainty which reflection reaches the measurement point first, 

or second, etc. For these reasons, it is not practical to attempt to identify unknown lengths 

in this manner (as was done for the flat stock) for the S3x5.7 section, even for the 

nonembedded case. Since the inclusion of embedment soil would only serve to add a new 

reflective surface, increasing the complexity of the problem even further, it was concluded 

that the determination o f unknown pile lengths for the S3x5.7 model pile sections through 

the characterization o f their wave propagation behavior using a spectrogram is not a feasible 

task.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The determination of unknown pile embedment depths seemed a likely candidate for 

solution via modal analysis techniques, since all but one of the pile-soil system 

characteristics were known or could be measured. As was discussed in Section 3.3, it was 

expected that since the modal parameters were dependent on some combination of the 

quantities pictured in Figure 3.10 (shown on page 85), they would vary accordingly with a 

particular value o f L2; it was believed that this quantity could be backcalculated from an 

analysis of the measured frequency response function data. Another favorable aspect of the 

modal analysis technique that was considered is that it is well-suited to the examination of 

impact data, which is easily measured, recorded, and stored, even in the somewhat “less- 

than-laboratory” conditions found surrounding older bridge piles whose lengths are 

unknown. Also, since access to the top of most piles is not commonly available, a technique 

was needed that could utilize flexural impact data, created with a transverse impact to the 

side o f a pile, rather than axial data, generated in response to a longitudinal impact applied 

to the exposed top o f a pile. Finally, it was anticipated that this method of analysis would
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eliminate the need for the subjective visual interpretation of graphical data trends, such as 

that necessary for many o f the techniques previously employed to accomplish this task.

7.1.1 Modal Parameter Estimation o f Experimental Frequency Response Function Data

Results of the comprehensive experimental study reported herein indicate that the 

physics of the pile-soil system preclude identification of embedment depth from its modal 

parameters in the frequency range considered valid for the modal parameter identification 

process. It is evident from the graphs of natural frequency versus mode number for the 

experimental data collected on the Group I piles (presented in Chapter IV) that for a given 

mode, the natural frequency values for each of the five piles are virtually identical (for tests 

along both the X and Y axes). Although the damping versus mode number plots show a 

greater variation with each pile for a given mode number, no clear trend is discemable that 

would allow a unique embedment length to be determined from backcalculation of the 

modal data.

As stated previously, it was believed that since only one property of the pile-soil system 

was unknown, a variation o f that characteristic should produce a corresponding, unique 

change in the modal parameters associated with the system. What is more accurate, 

however, is that as the embedded length changes, the amount o f soil included in the 

structural system changes as well; this additional soil influences the system’s vibration 

response to a flexural impact by affecting its mass, as well as the level of restraint that is 

experienced. Thus, there are, in essence, three unknown system characteristics being varied, 

namely the pile length, system mass, and system stiffness. The interaction of these three
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concurrently changing parameters produces an effect that is more complex in nature than 

that produced from a change in length alone. Results of the numerical analyses, discussed 

below, provide supporting evidence for this conclusion—they also furnish insight into the 

nature of the natural frequency trends for frequencies beyond those that are practical to 

measure experimentally.

Since the results of the analyses performed for the Group I piles proved that the modal 

analysis technique was not well-suited to the length determination of piles embedded in soil, 

further analysis of more intricate pile configurations (such as those encountered in the 

Group II piles) was deemed unwise. Additionally, no further efforts were made to fully 

characterize the fixity condition presented by the pile cap, or to account for the effect that 

other factors, such as the mass of the bridge deck or the presence of water, has on an 

embedded pile’s natural frequency.

7.1.2 Numerical Analyses

Three types of numerical analyses were performed to simulate the frequency response 

function data gathered in the experimental study. As described in Chapter V, the first 

analysis consisted of the analytical generation (and subsequent modal parameter estimation), 

o f frequency response functions corresponding to those of the Group I model piles; the 

MATLAB® programs used to produce the FRF’s were written according to the theories 

presented in the papers by Novak, Nogami, and Aboul-Ella (Novak et al., 1978; Novak and 

Aboul-Ella, 1978a; Novak and Aboul-Ella, 1978b). For the second numerical analysis, 

finite element models were created for each of the Group I model piles; the effects o f the
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soil were included via a set o f springs whose stiffness values corresponded to those 

computed in the first analysis. Similarly, these stiffness values were included in the third 

analysis, which was an adaptation of the solution presented by Weaver, Timoshenko, and 

Young for a beam resting on elastic supports.

Results of each of the three analyses were quite similar to those produced from the 

experimental study, and all indicated that in the 0-2000 Hz frequency range considered valid 

for the experimental parameter estimation, there is no identifiable difference in the natural 

frequency and damping values for a given mode. The finite element study did show, 

however, that above a certain “threshold” frequency value, the natural frequencies of the 

Group I piles branched into individual curves ordered in a progressive manner from Pile A 

to Pile E. These results, coupled with those from the theoretical solution for a beam resting 

on elastic supports, which indicated that all of the Group I piles exhibited natural frequency 

values much closer to those o f a fixed-fixed beam than to a free-free beam, suggest the 

following pattern of behavior as the mode number is increased: the stiffness of the pile-soil 

system is great enough (even for Pile A, whose embedded length is only 17 percent of its 

total length) that for each pile in its embedded state, the natural frequencies o f the first few 

modes (those whose frequency are below the threshold) are virtually identical. Once the 

threshold value is reached, though, the restraint provided by the soil becomes the dominant 

effect, and the natural frequency values are progressively lower as the percentage of 

embedment increases. As stated above, however, the threshold frequency appears to be 

above that which is practically attainable for the experimental modal parameter
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identification process, so that the frequencies estimated from the experimental data appear 

to be nearly identical for all o f the model piles.

The modal analysis process described herein, then, appears not to be the ideal method for 

identifying unknown pile embedment lengths. The information assembled does, however, 

provide valuable insight for future research into the nondestructive evaluation of pile tip 

elevations.

7.1.3 Wave Propagation Investigation

Results o f the rudimentary wave propagation study described in Chapter 6 indicate that 

the many reflective boundaries inherent in the S3x5.7 model pile shape render it a poor 

candidate for pile embedment length identification via an investigation o f its flexural wave 

propagation characteristics. Although this process would be beneficial for piles having very 

simple cross sections (i.e., circular or rectangular), the interacting wave reflections 

generated after impact in piles with more complex shapes might make it impractical for use 

in those cases. Also, the method as described in Chapter VI requires visual identification of 

graphical peaks, which makes it less attractive than a technique which relies on objective 

data itself rather than a subjective interpretation of the data.

7.2 Recommendations for Future Work 

Although the modal analysis approach as described in this work did not prove to be a 

practical solution to the pile embedment length problem, there are several concepts that 

deserve consideration for future investigations of this topic. First, if a reliable technique
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could be developed for obtaining data that was well-defined past the “threshold” frequency 

indicated by the finite element results, the principles presented in this study could 

presumably be applied to that experimental data, allowing modal parameter estimation in the 

higher frequency range, and subsequent backcalculation of embedded lengths. Similarly, if 

a method is developed by which reliable structural damping estimates can be obtained 

experimentally, this could perhaps be the modal parameter used to distinguish between piles 

of differing embedment lengths. Both of these options are attractive in that they make use 

of data collected as a result of a transverse, rather than a longitudinal impact, so that access 

to the top of the pile is not necessary. Also, they would both, in all likelihood, make use of 

objective interpretation o f the measured data, rather than visual perceptions of the positions 

o f graphical peaks.

As stated previously, pile lengths have been determined quite accurately in the past via 

the measurement of axial waves produced by longitudinal impacts (tests o f this type are 

described in Chapter I). If the process developed by Pandey et al. for timber piles could be 

extended for use on piles of other materials, field determination of unknown pile 

embedment lengths would be a relatively simple, efficient, and inexpensive task. Recall that 

in their assessment o f timber piles in Clallam County, Washington (Pandey et al., 1998) 

(detailed in Chapter I), the authors inserted lag bolts into each of the piles under 

investigation at an angle 45 degrees relative to their longitudinal axes. They then impacted 

the head o f the bolt, inducing a wave with enough energy in the longitudinal direction to be 

considered an axial wave. The length determination was then completed by measuring the 

time required for the wave to travel to the base o f the pile and reflect back along the pile
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length. This time, coupled with the stress wave velocity, was used to calculate the length of 

the piles. A similar procedure could be applied to piles of other materials if a fixture was 

fashioned that could be attached to the piles, and that, if impacted, would induce 

longitudinal waves in the accompanying pile.

An investigation into the use of ground penetrating radar imaging may also prove useful 

for the length identification problem. This technique involves the transmission and 

subsequent reception of high frequency electromagnetic energy that is radiated into a 

particular medium. It has previously been employed to detect and identify the shapes of 

subsurface objects, provide soil profiles of a given area, and to determine the position of 

rebar in in-place concrete structures (Thomas, 1995). Perhaps with some modifications it 

could be used to determine unknown embedment lengths from tests performed at the soil 

surface.

After a valid method has been devised for determining the embedment lengths o f piles of 

the type tested in Group I (which include only the piles themselves and the surrounding 

soil), the technique should be expanded to account for the effects of the various parameters 

encountered in the Group II piles, such as partial concrete encasement and end-bearing 

conditions. Tests should also be conducted on full-scale bridge piles o f known length to 

ensure that the process developed produces similar results for large-scale test specimens as 

for the small-scale laboratory pile sections. As a final step in the procedure, then, a 

determination of the true fixity condition provided by a typical pile cap should be made, and 

an investigation o f the effects o f the attached deck mass and presence o f water on a pile’s 

modal parameters should be conducted.
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7.3 Contributions

Several contributions to the current body of knowledge have been realized from the 

results of the study described herein. The modal analysis approach has been discounted as a 

practical, efficient method for identification of unknown pile embedment lengths. Not only 

has it been discounted, but the degree to which the method is inappropriate for the current 

application has been quantified through an analysis o f the modal characteristics of piles with 

embedment lengths ranging from 17 to 50 percent o f their total length. Additionally, the 

study’s results revealed the previously unknown fact that quite a significant amount of 

restraint is provided to a pile by the surrounding soil, even for relatively small embedment 

length percentages. (Such findings seem to naturally suggest a related investigation of the 

restraint mechanism that occurs in piles having embedment lengths less than 17 percent of 

their total length.) Finally, a comprehensive, methodically-obtained, and well organized 

dataset has been collected that quantifies the frequency response characteristics of 

embedded piles having various lengths, section properties, casement attributes, and end- 

bearing conditions. (Tests similar to those described for the laboratory piles were also 

conducted on a limited number o f full-scale bridge piles, though the results were not 

presented in this work.) This frequency response function dataset, along with the results of 

the experimental and numerical analyses contained herein, can serve as useful information 

for researchers in this field as they formulate future investigations into this, and related 

topics.
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APPENDIX A

EXPERIM ENTAL FREQUENCY RESPONSE FUNCTIONS

PIL EC
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Figure A.2 Experimental Frequency Response Functions for Pile C, Tested Along X Axis, 
Accelerom eter at Position 2, Impact at Positions 1-9
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Figure A. 10 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerometer at Position 1, Impact at Positions 1-9
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Figure A .l 1 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerometer a t Position 2, Impact at Positions 1 -9
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Figure A. 12 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerometer at Position 3, Impact at Positions 1-9
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Figure A. 13 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerom eter at Position 4, Impact at Positions 1-9
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Figure A. 14 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerometer at Position 5, Impact at Positions 1-9
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Figure A. 15 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerom eter at Position 6, Impact at Positions 1-9
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Figure A. 16 Experimental Frequency Response Functions for Pile C, Tested A long Y Axis, 
Accelerometer at Position 7, Impact at Positions 1-9
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Accelerom eter at Position 8, Impact at Positions 1-9

261

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A
cc

el
er

on
ce

 
M

og
ni

tu
de

, 
dB 

P
h

as
e

Bxperisentsl Frequency Response Functions C91Y to C99Y
Acceleroeeter st Position 9. Zstpsct st Positions 1-9

0

6 0
00 T T T

00

00

00

00

00
2 0 0 0 3 0 0 0 $0001 0 0 0 4 0 0 00

F r e q u e n c y .  Hz

Figure A. 18 Experimental Frequency Response Functions for Pile C, Tested Along Y Axis, 
Accelerometer at Position 9, Impact at Positions 1-9
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A P P E N D IX  B

P R O G R A M S  F O R  A N A L Y T I C A L  G E N E R A T IO N  O F  F R E Q U E N C Y  R E S P O N S E

F U N C T IO N  D A T A
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The programs presented in this appendix, written by Dr. Glenn Rix o f  the Georgia 

Institute o f  Technology, are those used to analytically derive frequency response function 

data for Group I Piles A through E, as described in Section 3.1. The main program was 

modified appropriately for each pile to account for its unique embedded length. The 

program used for Pile C is presented here to represent a typical case.

% Matlab m-file to calculate the frequency response function 
% of a transversely vibrating pile

% Glenn J. Rix

s Establish the properties of the pile elements

h = [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5]; "t Element length

A = [0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 
0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116]; SCross sectional 
area

I = [2.194E-5 2.194E-5 2.194E-5 2.194E-5 2.194E-5 2.194E-5 2.194E-5 
2.194E-5 2.194E-5 2.194E-5 2.194E-5 2.194E-5 2.194E-5 2.194E-5 
2.194E-5 2.194E-5]; I Area moment of inertia

EP = [4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 
4.2E9 4.2E9 4.2E9 4.2E9 4.2E9 4.2E9]; % Young's Modulus

DPile = [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01]; 4 Pile damping ratio

RhoPile = [15.22 15.22 15.22 15.22 15.22 15.22 15.22 15.22 15.22 
15.22 15.22 15.22 15.22 15.22 15.22 15.22]; % Mass density
NuPile = [0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 
0.27 0.27 0.27 0.27 0.27]; 4 Poisson's Ratio

Kappa = [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.0]; 4 Shape factor for shear

Nst = [ 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0  0]; % Static axial load
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width = [0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
0.25 0.25 0.25 0.25]; % Width in the direction of loading

EPile = E P .*(l+2*i.*DPile); % This is used to calculate aO for
the soil reactions

r = sqrt(I ./A); 1 Radius of gyration
MuPile = RhoPile.*A; I Mass per unit length

GPile = EPile./ (1+NuPile)./2; % Shear modulus

% Establish the upper and lower boundary conditions

Top = ’fixed'; % Fixed, free, or pinned
Bottom = 'free'; % Fixed, free, or pinned

% Establish the soil properties

Vs = [0 0 0 0 0 0 0 0 0 0 550 550 550 550 550 550];
% Shear wave velocity

RhoSoil = [0 0 0 0 0 0 0 0 0 0 3.2 3.2 3.2 3.2 3.2 3.2];
% Mass density

NuSoil = [0 0 0 0 0 0 0 0 0 0 0.2 -.2 0.2 0.2 0.2 0.2]; 
s Poisson's ratio

D = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0];
% Damping ratio

Cs = V s .*sqrt(l+2*i.*D);
% Complex shear wave velocity

GSoil = RhoSoil.* (Cs."2); % Complex shear modulus

LSoil = 2*GSoil.*NuSoil./ (l-2*NuSoii); % Complex Lame parameter

i Establish the load vector 

P = eye(2*length(h)+2);
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% Establish the range of frequencies 

f = 6.25:6.25:5000;

% Establish the FRF vector

FRF = zeros(2*length(h)+2,2*iength !h)+2,length(f));

waitHandle = waitbar(0,'Calculating...');

% Loop through all of the frequencies 

for j = l:length(f)

waitbar{j/length(f)) ;

I Calculate the circular frequency 

Omega = 2*pi*f(j) ;

% Preallocate and zero the globai stiffness matrices 

KGlobal = zeros(2*length(h)+2,2'length(h)+2) ;

% Calculate the soil reactions

ku = Horizontal(GSoil,LSoil,NuSoil,Vs,D,(width/2),Omega); 

kr = Rocking(GSoil,Vs,D,(width/2;,Omega);

% ku = [ 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 ] ;

% kr = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ;

% Calculate the element stiffness matrices

K = Element (Omega, ku, kr, h, r,MuPiie, Kappa, EPile, GPile, I, A, Nst)
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% Assemble the global stiffness matrix

for k = 1:length(h)

KGlobal (2*k-l:2*k+2,2*k-l:2*k+2) = KGlobal(2*k-l:2*k+2,2*k- 
1 : 2 * k+2) -r K( : ,  : , k ) ;

end

% Apply the boundary conditions 

switch lower(Top) 

case 'fixed'

KGlobal(:,1) = 0;KGlobal(1,:) = 0;KGlobal(1,1) = 1; 

KGlobal {:,2) = 0;KGlobal(2,:) = 0;KGlobal(2,2) = 1; 

case 'pinned'

KGlobal(:,1) = 0;KGlobal( 1 )  = 0;KGlobal(1,1) = 1;

end

switch lower(Bottom) 

case 'fixed'

KGlobal 2 “length i 'n) -»-i / - C; K G l o b a l  i 2 ’ length (h} t 1 ;  
0;KGlobal(2*length(h)+1,2*length(h ;-1) = 1;

KGlobal(:,2*length(h)+2) = 0;KGlobal(2*length(h)*2,:) 
0;KGlobal(2*length(h)+2,2*length(h!*2) = 1;

case 'pinned'
KGlobal(:,2'length(h)+1) = 0;KGlobal(2*length(h)+1,:) 

0;KGlobal(2*length(h)+1,2*length(h)+1) = 1;

end

% Solve the system of equations 

U = KGlobal\P;
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% Calculate the inertance FRF 

FRF(:,:» j) = - (OmegaA2 )*U;

end

close(waitHandle);

% Eliminate the rows and columns corresponding to rotations 

for k = 1:length(h) 

for n = 1:length(h)

FRFMatrix(k, n , :) = FRF(2*k^l,2'n+1,:);

end

end

save pilecsoil.mat FRFMatrix

function k = Horizontal(G,L,Nu,Vs,D, r,Omega)

% Horizontal determines the complex horizontal stiffness per unit

i length of a cylinder using the approach described in Novak,
Nogami, and Aboul-Ella (1978). The required input parameters are

% G Vector containing the shear modulus of each layer

% L Vector containing the Lame parameter of each iayer

% Nu Vector containing the Poisson's ratio of eacr. layer
% Vs Vector containing the shear wave velocity of each layer

% D Vector containing the damping ratio of each layer
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% r Vector containing the radius of the pile element in each
layer

% Omega Circular frequency (scalar!

4 Preallocate and zero k 

k = zeros(1,length(G));

I Determine the indices of the nonzero values of G 

x = find(G);

aO = Omega*r(x)./Vs(x);
aOO = i'aO./sqrt(l+2*i*D(x));

D1 = imag (L (x) -*-2'G (x) ) ./real (L (x ) 2 *G (x! ) ; 

n = sqrt ( 2 * ( 1-Nu(x) ) ./ (1-2'Nu(x)) ) ;  

bOO = i'aO./n./sqrt(l+i*Dl);

T = -(4'besselk(1,bOO).*besselk(1, aOO ) +  . . .

aOO. 'besselk(1,bOO) . *besselk •' 0, aOO) + . . . 

b 00.*besselk(C,bOO).'besselk(1, aOO ) ) . / . .  .

(bOO.'besselk(0,bOO).'besselk(1, aOO) + . . . 

aOO.'besselk(1,bOO).'besselk(0, aOO) + ... 

bOO.*a00.'besselk(0,b00).*besselk(0,a00)); 

k(x) = pi*G(x).'(aO."2).*T;

function k = Rocking(G,Vs,D,r,Omega!

% Rocking determines the complex rocking stiffness per unit

% length of a cylinder using the approach described in Novak,
269
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Nogami, and Aboul-Ella (1978). The required input parameters are

G Vector containing the shear modulus of each layer
Vs Vector containing the shear wave velocity of each layer
D Vector containing the damping ratio of each layer
r Vector containing the radius of the pile element in each

layer

i Omega Circular frequency (scalar

* Preallocate and zero k 

k = zeros(1,length(G));

1 Determine the indices of the nonzero values of G 

x = find(G);

aO = Omega*r(x)./Vs(x); 

aOO = i*aO./sqrt(l+2*i*D(x));

T = aOO.'besselk(0,aOO)./besselk(1,aOO)+1; 

k(x) = pi*G(x).*(r(x).A2) .*T;

function E =
Element(Omega,ku,kr,h,r,MuPile,Kappa,EPile,GPile,I,A,Nst)

% Element calculates the element stiffness matrix for each

% layer using the formulas in Novak and Aboul-Ella (1978).

s The results are stored in a 4x4xNLay matrix.

s Preallocate the element stiffness matrix
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E = zeros(4,4,length(h));

% Calculate terms used in the element stiffness matrices 

B1 = ((r .A2 ) .*MuPile*0megaA2 - kr * ...

Kappa.'EPile.* I .*(MuPile'Omega"2 - ku) ./GPile./A + ...

Nst.* (1+Kappa.'Nst./GPile./A))./EPile./I;

B2 = (MuPile'Omega^ - ku).*(1-Kappa.'((r .A2 ).*MuPile*0megaA2 - ... 

kr - Nst)./GPile./A)./EPile./I;

a = h.*sqrt((Bl + sqrt(Bl.A2 4*B2 , !/2); 

b = h.*sqrt((-Bl sqrt(Bl.A2  ̂ 4'~2; ! 2 )  ;

c = 1-Kappa.*((r .A2 ).'MuPile'Omega'2 - kr - Nst)./GPile./A;

abar = a. ♦ (1-Kappa .’EPile. *1. * (b. '2'> . /GPile. /A. / (h.A2 )./c)./...

(1~Kappa.*Nst./GPile./A);
bbar = b . * (1 + Kappa.*EPile.*1.*(a. '2 . /GPile./A./(h.A2)./c)./...

(1+Kappa.*Nst./GPile./A);

phi = 2*abar.*bbar.*(cosh(b).*cos(a;-1) + (abar.A2 - 
bbar.A2 ).*sinh(b).*sin(a);
FI = - (a.A2+b.A2 ).*(abar.*sinh(b) - bbar.*sin(a))./phi;

F2 = - (a. A2+b. A2 ) . * (bbar. *cosh (b) . * s m  (a) - 
abar.# s i n h (b ).* c o s (a ))./phi;

F3 = -abar. *bbar. * (a. A2+b. A2 ) . * (cosr. (b) - cos (a) )./phi;

F4 = (abar.*bbar.*(b.*bbar - a.*abar:.*(cosh(b).*cos(a)-1) + ...
abar.*bbar.*(abar.*b + a .*bbar) .*sinh(b) .'sin(a))./phi;

F5 = abar.*bbar.*(a.A2+b.A2 ).*(bbar.*sinh(b) + abar.*sin(a))./phi;

F6 = -abar.*bbar.*(a.A2+b.A2 ).*(abar.'cosh(b ).'sin(a) + 
bbar.'sinh(b).'cos(a))./phi;

for j = 1:length(h)
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E < : , j )  
F5(j)/h(j)A3

F3(j)/h(j)A2

F6(j)/h(j)A3

F2 ( j ) / h (j ) ] ; 

end

EPile ( j ) *1 ( j ) * [F6 ( j ) /r. ( j ) A3 F 4 (j)/h(j)A2 
-F3(j)/h(j)A2 ;

F4(j)/h(j)A2 F2(j)/h(j)
Fl(j)/h(j) ;

F5(j)/hij)A3 F3(j)/h(j)A2
-F4(j)/h(j)A2;

-F3 (j i ■ r. (j) A2 FI (j ) / h (j) -F4(j)/h(j)
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A P P E N D IX  C

M O D E  S H A P E S  F O R  P IL E  A  IN  E M B E D D E D  C O N F IG U R A T IO N  G E N E R A T E D  B Y

F IN IT E  E L E M E N T  M O D E L
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Figure C.l Pile A, Embedded Configuration, Finite Element Mode Shapes 1,2,3,5
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Figure C.2 Pile A, Embedded Configuration. Finite Element Mode Shapes 5,7,8,10
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Figure C.3 Pile A, Embedded Configuration. Finite Element Mode Shapes 11.12,13,14
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Figure C.4 Pile A, Embedded Configuration, Finite Element Mode Shapes 16,17,18,19
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Figure C.5 Pile A, Embedded Configuration. Finite Element Mode Shapes 20,21,22,25
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Figure C . 6  Pile A, Embedded Configuration, Finite Element Mode Shapes 26,28,29,30

279

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

Figure C.7 Pile A, Embedded Configuration. Finite Element Mode Shapes 31,33,34,36
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mm

Figure C . 8  Pile A, Embedded Configuration. Finite Element Mode Shapes 37,38,39
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APPENDIX D

DERIVATION OF THEORETICAL SOLUTION
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Beams on Elastic Supports or Elastic Foundations

The derivation shown below is developed in the text by Weaver et al. (1990), beginning

on page 456. The authors state:

Support restraint conditions at the ends o f a beam may be intermediate between the 
extremes of zero restraint and full restraint. If  such restraints against either 
translations or rotations are linearly elastic, they may be idealized as springs, as 
shown in Figure [D .l]. Let the symbols k\ and k2 represent the stiffness constants for 
the translational and rotational springs at the left end; k3 and kj are the stiffness 
constants for the translational and rotational springs at the right end. In this case the 
boundary conditions may be expressed as

i'n ,=£/(*-)„„ = - w „ .  (D.i)

V„L = = *, (X ) „ L M,„l = E I(X -)„ l = - k 4  ( X ') . . ,  (D.2)

where

V = shearing force, 

x  = position along the beam,

E = beam modulus o f  elasticity,

/ =  beam moment o f  inertia,

X  = normal function for transverse vibration o f a prismatic beam,

M= bending moment, and 

L = beam length.
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,E I

Figure D .l Beam On Elastic Supports Idealized as Springs

El
For A =  J — , where a =  J — , the normal function X and its derivatives may be written as

m

(Weaver et al., 1990— see Equation (5.85), p. 418):

X = C, sin kx + C2 cos kx + C3 sinh kx + C4 cosh Ax (D.3)

X' = A(C, cos kx -  C, sin kx + C , cosh kx + Ct sinh kx) (D.4)

X" = k2 (-C, sin kx -  C2 cos kx + C3 sinh Ax + C4 cosh Ax) (D.5)

X" = kl (-C, cos Ax + C2 sin Ax + C3 cosh Ax + C4 sinh Ax) (D.6)

where Ci through C4  are constants that “must be determined in each particular case from the 

boundary conditions at the ends o f  the beam” (Weaver et al., 1990). Substituting
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appropriately from Equations D.3 through D . 6  into the boundary condition Equations D.l 

and D.2 gives

(-Elk* cos kL-k) sin kL)Cx + (Elk sin kL-ki cos kL)C2
(D.9)

+ (EIkl coshkL-k2siahkL)C3 +(EIk3 siahkL-k3 coshkL)C4 = 0

(~EIksinkL + k4 coskL)Cx + (-E IkcoskL -ki sin££)C,

+ (ElksinhkL + k4 coshkL)C3 +(Elk cosh kL + k^sinhkL)Ci = 0 .

For a beam with one end fixed (say the left end). k\=<x> and k2 = oo. Substituting these 

values into Equations D.7 through D.10, and setting the determinant o f the coefficients o f 

the constants C | through C4 equal to zero (for a nontrivial solution) gives

0 0

0 0

-  Elk3 cos kL Elk3 sin kL Elk3 cosh kL Elk3 sinh kL
-k^smkL - k 3coskL -L.sinhkL -k^coshkL

= 0. (D.l 1)

-  Elk sin kL -E lk  cos kL Elk sinh kL Elk cosh kL
+ ki coskL - k i sxnkL + ki coshkL +£4sinh&£
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Expanding the determinant produces the following:

k3kt sinh2(A£) -  k3kt cosh2(kL) -  (El)2 kA cosh2(kL)
+ (El)2 k4 sinh2 (kL) -  sin2 (kL) -  &3&4 cos2(kL)
-  2EIk3kA sin(kL)cosh(kL) + 2EIkk3 cos(fcL)sinh(kL)
+ 2k3k4 cos(££)cosh(&£) -  2(EI)2kA cos(kL)cosh(kL) ^
-2EIk3k4 cos(kL)sinh(kL)-(EI)2kA cos2(kL)
-2EIkk3 sin(kL)cosh(kL) -  (El)2kA sin2(A£) = 0.

Simplifying produces

~[(EI)2k4 + £3£4] sinh2 (&£.) + [( £ /)2&4 + £,£,] cosh2 (A£)
+ [(£/)2*4 + k3k4]sm2(kL) + [(EI)2kA + k3k,]cos2 (kL)
+ [2EI(kk3 + k3kt )] sin (kL) cosh (kL) -  [2 El (kk3 -  k3k )̂] cos (kL) swh(kL)
-  [-2(EI)2kA + 2k3ki ] cos(kL) cosh(A£) = 0.

Further sim plification gives

[(EI)2 k A + k 3kA ] [cosh 2 (k L ) -  s inh 2 (kL)]

+ [ ( £ / ) 2 * 4  +  £ 3£ 4 ][sin 2 (A£) +  cos 2 (A£)]

+ [2 EI(kk3 +  k 3kt )] sin (kL) cosh (kL) (D.14)

-  [2EI(kk3 -  k 3kA)]cos(A£) sinh(A£)

+ [2 ( £ / ) 2 k A -  2 k3kA ] cos (kL) cosh (kL) =  0.

286

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

Noting that cosh2(AZ.)-sinh2(A£)=l and that sin2(&£)+cosh2(&£)=l, equation D .l4 further 

simplifies to

2[(EI)2 k* + k-ik i ] + 2 [El(kk^ + &3&4 )]sin(& £)cosh(A£)

- 2 [EI(kk3 - f c 3 £4 )]cos(£Z,)sinh(&£,) (D .l5)

+ 2[(EI)2 k* - k 3kA] cos(kL) cosh(A£) =  0.

Dividing each term by 2, and multiplying and dividing by appropriate powers o f  L gives

\  [(El)2 (kL)* + L*k.,*4 ] + — [EI(L2k3 (kL) + (kL)3 k4)] sin (kL) cosh (kL)
L L*

-  -i- [EI(L2k3(kL) -  (kL)3k4)] cos(Â ) sinh(A£) (D. 16)
L

+ \ [ ( E I ) 2(kL)* -  I?k3kx]cos(kL)cosh(kL) = 0.
L

[a> [.El
Remembering that k  =  J — and a - J —  . the following may be 

V a V m
wntten:

,1  03 ; 2 , 2  [E l ( ^ ) ,  [EJ ST\ 1k — => tu — k;a  =  k; —  = — ^  —  (D. 17)
a  \  m L~ \ m

where / refers to the mode o f interest. Remembering also the properties o f  the S3x5.7 

section under investigation and combining them in the proper fashion produces the 

following useful quantities:
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E = 4.2-109 lb! f t2 1
-0455**-2.194.10" J»*} =

L = 5 f t

J . l t b l f t  , 0 1 7 7 » ^ 1  
32.18 /r/s / r

The following values o f £ 3  and £ 4  for each pile were determined from the programs 

Horizontal.m and Rocking.m, which were used in the process o f  analytically generating 

frequency response functions as described in Section 5.1:

For Pile A:

£ 3  = 5.7583-107 (lb/ft)/ft • (1 ft) = 5.7583-10 lb/ft (from Horizontal.m)

£ 4  = 3.3769-105 (ft-lb/rad)/ft • (1 ft) = 3.3 769-105 ft-lb/rad (from Rocking.m)

For Pile B:

£ 3  = 5.7583-107 (lb/ft)/ft • (2 ft) = 1.1516610s lb/ft 

£ 4  = 3.3 769-105 (ft-lb/rad)/ft • (2 ft) = 6.753 8 -105 ft-lb/rad 

For Pile C:

£ 3  = 5.7583-107 (lb/ft)/ft • (3 ft) = 1.727 10s lb/ft 

£ 4  = 3.3 769-105 (ft-lb/rad)/ft • (3 ft) = 1.013-10° ft-lb/rad 

For Pile D:

£ 3  = 5.7583-107 (lb/ft)/ft • (4 ft) = 2.303-10* lb/ft 

£, = 3.3769-105 (ft-lb/rad)/ft • (4 ft) = 1.351-I06 ft-lb/rad
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For Pile E:

* 3 = 5.7583-107 (lb/ft)/ft • (5 ft) = 2.879-10* lb/ft

/fc, = 3.3769-105 (ft-lb/rad)/ft • (5 ft) = 1.688 1 06 ft-lb/rad

Substituting the section property values and the appropriate values o f k3 and k4 for each pile 

into Equation D .l 6 , and solving for the (kL) values that rendered the equation equal to zero 

produced the quantities that were then inserted into Equation D .l7 to determine the 

theoretical natural frequency values for the Group I test pile systems. These values are 

reported in Section 5.3.1.
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